Metamath Proof Explorer


Theorem nvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvs.1 X = BaseSet U
nvs.4 S = 𝑠OLD U
nvs.6 N = norm CV U
Assertion nvsge0 U NrmCVec A 0 A B X N A S B = A N B

Proof

Step Hyp Ref Expression
1 nvs.1 X = BaseSet U
2 nvs.4 S = 𝑠OLD U
3 nvs.6 N = norm CV U
4 recn A A
5 4 adantr A 0 A A
6 1 2 3 nvs U NrmCVec A B X N A S B = A N B
7 5 6 syl3an2 U NrmCVec A 0 A B X N A S B = A N B
8 absid A 0 A A = A
9 8 3ad2ant2 U NrmCVec A 0 A B X A = A
10 9 oveq1d U NrmCVec A 0 A B X A N B = A N B
11 7 10 eqtrd U NrmCVec A 0 A B X N A S B = A N B