Metamath Proof Explorer


Theorem nvsid

Description: Identity element for the scalar product of a normed complex vector space. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nvscl.1 X = BaseSet U
nvscl.4 S = 𝑠OLD U
Assertion nvsid U NrmCVec A X 1 S A = A

Proof

Step Hyp Ref Expression
1 nvscl.1 X = BaseSet U
2 nvscl.4 S = 𝑠OLD U
3 eqid 1 st U = 1 st U
4 3 nvvc U NrmCVec 1 st U CVec OLD
5 eqid + v U = + v U
6 5 vafval + v U = 1 st 1 st U
7 2 smfval S = 2 nd 1 st U
8 1 5 bafval X = ran + v U
9 6 7 8 vcidOLD 1 st U CVec OLD A X 1 S A = A
10 4 9 sylan U NrmCVec A X 1 S A = A