Metamath Proof Explorer


Theorem nvss

Description: Structure of the class of all normed complex vectors spaces. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)

Ref Expression
Assertion nvss NrmCVec CVec OLD × V

Proof

Step Hyp Ref Expression
1 eleq1 w = g s w CVec OLD g s CVec OLD
2 1 biimpar w = g s g s CVec OLD w CVec OLD
3 2 3ad2antr1 w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y w CVec OLD
4 3 exlimivv g s w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y w CVec OLD
5 vex n V
6 4 5 jctir g s w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y w CVec OLD n V
7 6 ssopab2i w n | g s w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y w n | w CVec OLD n V
8 df-nv NrmCVec = g s n | g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
9 dfoprab2 g s n | g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y = w n | g s w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
10 8 9 eqtri NrmCVec = w n | g s w = g s g s CVec OLD n : ran g x ran g n x = 0 x = GId g y n y s x = y n x y ran g n x g y n x + n y
11 df-xp CVec OLD × V = w n | w CVec OLD n V
12 7 10 11 3sstr4i NrmCVec CVec OLD × V