Metamath Proof Explorer


Theorem nvsz

Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvsz.4 S = 𝑠OLD U
nvsz.6 Z = 0 vec U
Assertion nvsz U NrmCVec A A S Z = Z

Proof

Step Hyp Ref Expression
1 nvsz.4 S = 𝑠OLD U
2 nvsz.6 Z = 0 vec U
3 eqid 1 st U = 1 st U
4 3 nvvc U NrmCVec 1 st U CVec OLD
5 eqid + v U = + v U
6 5 vafval + v U = 1 st 1 st U
7 1 smfval S = 2 nd 1 st U
8 eqid BaseSet U = BaseSet U
9 8 5 bafval BaseSet U = ran + v U
10 eqid GId + v U = GId + v U
11 6 7 9 10 vcz 1 st U CVec OLD A A S GId + v U = GId + v U
12 4 11 sylan U NrmCVec A A S GId + v U = GId + v U
13 5 2 0vfval U NrmCVec Z = GId + v U
14 13 adantr U NrmCVec A Z = GId + v U
15 14 oveq2d U NrmCVec A A S Z = A S GId + v U
16 12 15 14 3eqtr4d U NrmCVec A A S Z = Z