Metamath Proof Explorer


Theorem nvtri

Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvtri.1 X = BaseSet U
nvtri.2 G = + v U
nvtri.6 N = norm CV U
Assertion nvtri U NrmCVec A X B X N A G B N A + N B

Proof

Step Hyp Ref Expression
1 nvtri.1 X = BaseSet U
2 nvtri.2 G = + v U
3 nvtri.6 N = norm CV U
4 eqid 𝑠OLD U = 𝑠OLD U
5 4 smfval 𝑠OLD U = 2 nd 1 st U
6 5 eqcomi 2 nd 1 st U = 𝑠OLD U
7 eqid 0 vec U = 0 vec U
8 1 2 6 7 3 nvi U NrmCVec G 2 nd 1 st U CVec OLD N : X x X N x = 0 x = 0 vec U y N y 2 nd 1 st U x = y N x y X N x G y N x + N y
9 8 simp3d U NrmCVec x X N x = 0 x = 0 vec U y N y 2 nd 1 st U x = y N x y X N x G y N x + N y
10 simp3 N x = 0 x = 0 vec U y N y 2 nd 1 st U x = y N x y X N x G y N x + N y y X N x G y N x + N y
11 10 ralimi x X N x = 0 x = 0 vec U y N y 2 nd 1 st U x = y N x y X N x G y N x + N y x X y X N x G y N x + N y
12 9 11 syl U NrmCVec x X y X N x G y N x + N y
13 fvoveq1 x = A N x G y = N A G y
14 fveq2 x = A N x = N A
15 14 oveq1d x = A N x + N y = N A + N y
16 13 15 breq12d x = A N x G y N x + N y N A G y N A + N y
17 oveq2 y = B A G y = A G B
18 17 fveq2d y = B N A G y = N A G B
19 fveq2 y = B N y = N B
20 19 oveq2d y = B N A + N y = N A + N B
21 18 20 breq12d y = B N A G y N A + N y N A G B N A + N B
22 16 21 rspc2v A X B X x X y X N x G y N x + N y N A G B N A + N B
23 12 22 syl5 A X B X U NrmCVec N A G B N A + N B
24 23 3impia A X B X U NrmCVec N A G B N A + N B
25 24 3comr U NrmCVec A X B X N A G B N A + N B