Metamath Proof Explorer


Theorem nvvc

Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis nvvc.1 W = 1 st U
Assertion nvvc U NrmCVec W CVec OLD

Proof

Step Hyp Ref Expression
1 nvvc.1 W = 1 st U
2 eqid + v U = + v U
3 eqid 𝑠OLD U = 𝑠OLD U
4 1 2 3 nvvop U NrmCVec W = + v U 𝑠OLD U
5 eqid BaseSet U = BaseSet U
6 eqid 0 vec U = 0 vec U
7 eqid norm CV U = norm CV U
8 5 2 3 6 7 nvi U NrmCVec + v U 𝑠OLD U CVec OLD norm CV U : BaseSet U x BaseSet U norm CV U x = 0 x = 0 vec U y norm CV U y 𝑠OLD U x = y norm CV U x y BaseSet U norm CV U x + v U y norm CV U x + norm CV U y
9 8 simp1d U NrmCVec + v U 𝑠OLD U CVec OLD
10 4 9 eqeltrd U NrmCVec W CVec OLD