Metamath Proof Explorer


Theorem nvvcop

Description: A normed complex vector space is a vector space. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)

Ref Expression
Assertion nvvcop W N NrmCVec W CVec OLD

Proof

Step Hyp Ref Expression
1 nvss NrmCVec CVec OLD × V
2 1 sseli W N NrmCVec W N CVec OLD × V
3 opelxp1 W N CVec OLD × V W CVec OLD
4 2 3 syl W N NrmCVec W CVec OLD