Metamath Proof Explorer


Theorem nvz

Description: The norm of a vector is zero iff the vector is zero. First part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvz.1 X = BaseSet U
nvz.5 Z = 0 vec U
nvz.6 N = norm CV U
Assertion nvz U NrmCVec A X N A = 0 A = Z

Proof

Step Hyp Ref Expression
1 nvz.1 X = BaseSet U
2 nvz.5 Z = 0 vec U
3 nvz.6 N = norm CV U
4 eqid + v U = + v U
5 eqid 𝑠OLD U = 𝑠OLD U
6 1 4 5 2 3 nvi U NrmCVec + v U 𝑠OLD U CVec OLD N : X x X N x = 0 x = Z y N y 𝑠OLD U x = y N x y X N x + v U y N x + N y
7 6 simp3d U NrmCVec x X N x = 0 x = Z y N y 𝑠OLD U x = y N x y X N x + v U y N x + N y
8 simp1 N x = 0 x = Z y N y 𝑠OLD U x = y N x y X N x + v U y N x + N y N x = 0 x = Z
9 8 ralimi x X N x = 0 x = Z y N y 𝑠OLD U x = y N x y X N x + v U y N x + N y x X N x = 0 x = Z
10 fveqeq2 x = A N x = 0 N A = 0
11 eqeq1 x = A x = Z A = Z
12 10 11 imbi12d x = A N x = 0 x = Z N A = 0 A = Z
13 12 rspccv x X N x = 0 x = Z A X N A = 0 A = Z
14 7 9 13 3syl U NrmCVec A X N A = 0 A = Z
15 14 imp U NrmCVec A X N A = 0 A = Z
16 fveq2 A = Z N A = N Z
17 2 3 nvz0 U NrmCVec N Z = 0
18 16 17 sylan9eqr U NrmCVec A = Z N A = 0
19 18 ex U NrmCVec A = Z N A = 0
20 19 adantr U NrmCVec A X A = Z N A = 0
21 15 20 impbid U NrmCVec A X N A = 0 A = Z