Metamath Proof Explorer


Theorem nvz0

Description: The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvz0.5 Z = 0 vec U
nvz0.6 N = norm CV U
Assertion nvz0 U NrmCVec N Z = 0

Proof

Step Hyp Ref Expression
1 nvz0.5 Z = 0 vec U
2 nvz0.6 N = norm CV U
3 eqid BaseSet U = BaseSet U
4 3 1 nvzcl U NrmCVec Z BaseSet U
5 0re 0
6 0le0 0 0
7 5 6 pm3.2i 0 0 0
8 eqid 𝑠OLD U = 𝑠OLD U
9 3 8 2 nvsge0 U NrmCVec 0 0 0 Z BaseSet U N 0 𝑠OLD U Z = 0 N Z
10 7 9 mp3an2 U NrmCVec Z BaseSet U N 0 𝑠OLD U Z = 0 N Z
11 4 10 mpdan U NrmCVec N 0 𝑠OLD U Z = 0 N Z
12 3 8 1 nv0 U NrmCVec Z BaseSet U 0 𝑠OLD U Z = Z
13 4 12 mpdan U NrmCVec 0 𝑠OLD U Z = Z
14 13 fveq2d U NrmCVec N 0 𝑠OLD U Z = N Z
15 3 2 nvcl U NrmCVec Z BaseSet U N Z
16 15 recnd U NrmCVec Z BaseSet U N Z
17 4 16 mpdan U NrmCVec N Z
18 17 mul02d U NrmCVec 0 N Z = 0
19 11 14 18 3eqtr3d U NrmCVec N Z = 0