Metamath Proof Explorer


Theorem nvzcl

Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvzcl.1 X = BaseSet U
nvzcl.6 Z = 0 vec U
Assertion nvzcl U NrmCVec Z X

Proof

Step Hyp Ref Expression
1 nvzcl.1 X = BaseSet U
2 nvzcl.6 Z = 0 vec U
3 eqid + v U = + v U
4 3 2 0vfval U NrmCVec Z = GId + v U
5 3 nvgrp U NrmCVec + v U GrpOp
6 1 3 bafval X = ran + v U
7 eqid GId + v U = GId + v U
8 6 7 grpoidcl + v U GrpOp GId + v U X
9 5 8 syl U NrmCVec GId + v U X
10 4 9 eqeltrd U NrmCVec Z X