Metamath Proof Explorer


Theorem nzadd

Description: The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion nzadd A B A + B

Proof

Step Hyp Ref Expression
1 eldif A A ¬ A
2 zre B B
3 readdcl A B A + B
4 2 3 sylan2 A B A + B
5 4 adantlr A ¬ A B A + B
6 zsubcl A + B B A + B - B
7 6 expcom B A + B A + B - B
8 7 adantl A B A + B A + B - B
9 recn A A
10 zcn B B
11 pncan A B A + B - B = A
12 9 10 11 syl2an A B A + B - B = A
13 12 eleq1d A B A + B - B A
14 8 13 sylibd A B A + B A
15 14 con3d A B ¬ A ¬ A + B
16 15 ex A B ¬ A ¬ A + B
17 16 com23 A ¬ A B ¬ A + B
18 17 imp31 A ¬ A B ¬ A + B
19 5 18 jca A ¬ A B A + B ¬ A + B
20 1 19 sylanb A B A + B ¬ A + B
21 eldif A + B A + B ¬ A + B
22 20 21 sylibr A B A + B