Metamath Proof Explorer


Theorem nzrnz

Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses isnzr.o 1 ˙ = 1 R
isnzr.z 0 ˙ = 0 R
Assertion nzrnz R NzRing 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 isnzr.o 1 ˙ = 1 R
2 isnzr.z 0 ˙ = 0 R
3 1 2 isnzr R NzRing R Ring 1 ˙ 0 ˙
4 3 simprbi R NzRing 1 ˙ 0 ˙