Metamath Proof Explorer


Theorem nzrpropd

Description: If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses nzrpropd.1 φ B = Base K
nzrpropd.2 φ B = Base L
nzrpropd.3 φ x B y B x + K y = x + L y
nzrpropd.4 φ x B y B x K y = x L y
Assertion nzrpropd φ K NzRing L NzRing

Proof

Step Hyp Ref Expression
1 nzrpropd.1 φ B = Base K
2 nzrpropd.2 φ B = Base L
3 nzrpropd.3 φ x B y B x + K y = x + L y
4 nzrpropd.4 φ x B y B x K y = x L y
5 1 2 3 4 ringpropd φ K Ring L Ring
6 1 2 4 rngidpropd φ 1 K = 1 L
7 1 2 3 grpidpropd φ 0 K = 0 L
8 6 7 neeq12d φ 1 K 0 K 1 L 0 L
9 5 8 anbi12d φ K Ring 1 K 0 K L Ring 1 L 0 L
10 eqid 1 K = 1 K
11 eqid 0 K = 0 K
12 10 11 isnzr K NzRing K Ring 1 K 0 K
13 eqid 1 L = 1 L
14 eqid 0 L = 0 L
15 13 14 isnzr L NzRing L Ring 1 L 0 L
16 9 12 15 3bitr4g φ K NzRing L NzRing