Metamath Proof Explorer


Theorem nzrring

Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015) (Proof shortened by SN, 23-Feb-2025)

Ref Expression
Assertion nzrring R NzRing R Ring

Proof

Step Hyp Ref Expression
1 df-nzr NzRing = r Ring | 1 r 0 r
2 1 ssrab3 NzRing Ring
3 2 sseli R NzRing R Ring