Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Nonzero rings and zero rings
nzrring
Next ⟩
drngnzr
Metamath Proof Explorer
Ascii
Unicode
Theorem
nzrring
Description:
A nonzero ring is a ring.
(Contributed by
Stefan O'Rear
, 24-Feb-2015)
Ref
Expression
Assertion
nzrring
⊢
R
∈
NzRing
→
R
∈
Ring
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
1
R
=
1
R
2
eqid
⊢
0
R
=
0
R
3
1
2
isnzr
⊢
R
∈
NzRing
↔
R
∈
Ring
∧
1
R
≠
0
R
4
3
simplbi
⊢
R
∈
NzRing
→
R
∈
Ring