Metamath Proof Explorer


Theorem nzrring

Description: A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion nzrring R NzRing R Ring

Proof

Step Hyp Ref Expression
1 eqid 1 R = 1 R
2 eqid 0 R = 0 R
3 1 2 isnzr R NzRing R Ring 1 R 0 R
4 3 simplbi R NzRing R Ring