Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Nonzero rings and zero rings
nzrunit
Next ⟩
subrgnzr
Metamath Proof Explorer
Ascii
Unicode
Theorem
nzrunit
Description:
A unit is nonzero in any nonzero ring.
(Contributed by
Mario Carneiro
, 6-Oct-2015)
Ref
Expression
Hypotheses
nzrunit.1
⊢
U
=
Unit
⁡
R
nzrunit.2
⊢
0
˙
=
0
R
Assertion
nzrunit
⊢
R
∈
NzRing
∧
A
∈
U
→
A
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
nzrunit.1
⊢
U
=
Unit
⁡
R
2
nzrunit.2
⊢
0
˙
=
0
R
3
eqid
⊢
1
R
=
1
R
4
3
2
nzrnz
⊢
R
∈
NzRing
→
1
R
≠
0
˙
5
nzrring
⊢
R
∈
NzRing
→
R
∈
Ring
6
1
2
3
0unit
⊢
R
∈
Ring
→
0
˙
∈
U
↔
1
R
=
0
˙
7
6
necon3bbid
⊢
R
∈
Ring
→
¬
0
˙
∈
U
↔
1
R
≠
0
˙
8
5
7
syl
⊢
R
∈
NzRing
→
¬
0
˙
∈
U
↔
1
R
≠
0
˙
9
4
8
mpbird
⊢
R
∈
NzRing
→
¬
0
˙
∈
U
10
eleq1
⊢
A
=
0
˙
→
A
∈
U
↔
0
˙
∈
U
11
10
notbid
⊢
A
=
0
˙
→
¬
A
∈
U
↔
¬
0
˙
∈
U
12
9
11
syl5ibrcom
⊢
R
∈
NzRing
→
A
=
0
˙
→
¬
A
∈
U
13
12
necon2ad
⊢
R
∈
NzRing
→
A
∈
U
→
A
≠
0
˙
14
13
imp
⊢
R
∈
NzRing
∧
A
∈
U
→
A
≠
0
˙