Metamath Proof Explorer


Theorem nzrunit

Description: A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nzrunit.1 U = Unit R
nzrunit.2 0 ˙ = 0 R
Assertion nzrunit R NzRing A U A 0 ˙

Proof

Step Hyp Ref Expression
1 nzrunit.1 U = Unit R
2 nzrunit.2 0 ˙ = 0 R
3 eqid 1 R = 1 R
4 3 2 nzrnz R NzRing 1 R 0 ˙
5 nzrring R NzRing R Ring
6 1 2 3 0unit R Ring 0 ˙ U 1 R = 0 ˙
7 6 necon3bbid R Ring ¬ 0 ˙ U 1 R 0 ˙
8 5 7 syl R NzRing ¬ 0 ˙ U 1 R 0 ˙
9 4 8 mpbird R NzRing ¬ 0 ˙ U
10 eleq1 A = 0 ˙ A U 0 ˙ U
11 10 notbid A = 0 ˙ ¬ A U ¬ 0 ˙ U
12 9 11 syl5ibrcom R NzRing A = 0 ˙ ¬ A U
13 12 necon2ad R NzRing A U A 0 ˙
14 13 imp R NzRing A U A 0 ˙