Metamath Proof Explorer


Theorem o1bdd

Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion o1bdd F 𝑂1 F : A x m y A x y F y m

Proof

Step Hyp Ref Expression
1 simpl F 𝑂1 F : A F 𝑂1
2 simpr F 𝑂1 F : A F : A
3 fdm F : A dom F = A
4 3 adantl F 𝑂1 F : A dom F = A
5 o1dm F 𝑂1 dom F
6 5 adantr F 𝑂1 F : A dom F
7 4 6 eqsstrrd F 𝑂1 F : A A
8 elo12 F : A A F 𝑂1 x m y A x y F y m
9 2 7 8 syl2anc F 𝑂1 F : A F 𝑂1 x m y A x y F y m
10 1 9 mpbid F 𝑂1 F : A x m y A x y F y m