Metamath Proof Explorer


Theorem o1dif

Description: If the difference of two functions is eventually bounded, eventual boundedness of either one implies the other. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1dif.1 φ x A B
o1dif.2 φ x A C
o1dif.3 φ x A B C 𝑂1
Assertion o1dif φ x A B 𝑂1 x A C 𝑂1

Proof

Step Hyp Ref Expression
1 o1dif.1 φ x A B
2 o1dif.2 φ x A C
3 o1dif.3 φ x A B C 𝑂1
4 o1sub x A B 𝑂1 x A B C 𝑂1 x A B f x A B C 𝑂1
5 4 expcom x A B C 𝑂1 x A B 𝑂1 x A B f x A B C 𝑂1
6 3 5 syl φ x A B 𝑂1 x A B f x A B C 𝑂1
7 1 2 subcld φ x A B C
8 7 ralrimiva φ x A B C
9 dmmptg x A B C dom x A B C = A
10 8 9 syl φ dom x A B C = A
11 o1dm x A B C 𝑂1 dom x A B C
12 3 11 syl φ dom x A B C
13 10 12 eqsstrrd φ A
14 reex V
15 14 ssex A A V
16 13 15 syl φ A V
17 eqidd φ x A B = x A B
18 eqidd φ x A B C = x A B C
19 16 1 7 17 18 offval2 φ x A B f x A B C = x A B B C
20 1 2 nncand φ x A B B C = C
21 20 mpteq2dva φ x A B B C = x A C
22 19 21 eqtrd φ x A B f x A B C = x A C
23 22 eleq1d φ x A B f x A B C 𝑂1 x A C 𝑂1
24 6 23 sylibd φ x A B 𝑂1 x A C 𝑂1
25 o1add x A B C 𝑂1 x A C 𝑂1 x A B C + f x A C 𝑂1
26 25 ex x A B C 𝑂1 x A C 𝑂1 x A B C + f x A C 𝑂1
27 3 26 syl φ x A C 𝑂1 x A B C + f x A C 𝑂1
28 eqidd φ x A C = x A C
29 16 7 2 18 28 offval2 φ x A B C + f x A C = x A B - C + C
30 1 2 npcand φ x A B - C + C = B
31 30 mpteq2dva φ x A B - C + C = x A B
32 29 31 eqtrd φ x A B C + f x A C = x A B
33 32 eleq1d φ x A B C + f x A C 𝑂1 x A B 𝑂1
34 27 33 sylibd φ x A C 𝑂1 x A B 𝑂1
35 24 34 impbid φ x A B 𝑂1 x A C 𝑂1