Step |
Hyp |
Ref |
Expression |
1 |
|
o1fsum.1 |
|
2 |
|
o1fsum.2 |
|
3 |
|
nnssre |
|
4 |
3
|
a1i |
|
5 |
1 2
|
o1mptrcl |
|
6 |
|
1red |
|
7 |
4 5 6
|
elo1mpt2 |
|
8 |
2 7
|
mpbid |
|
9 |
|
rpssre |
|
10 |
9
|
a1i |
|
11 |
|
nfcv |
|
12 |
|
nfcsb1v |
|
13 |
|
csbeq1a |
|
14 |
11 12 13
|
cbvsumi |
|
15 |
|
fzfid |
|
16 |
|
o1f |
|
17 |
2 16
|
syl |
|
18 |
1
|
ralrimiva |
|
19 |
|
dmmptg |
|
20 |
18 19
|
syl |
|
21 |
20
|
feq2d |
|
22 |
17 21
|
mpbid |
|
23 |
|
eqid |
|
24 |
23
|
fmpt |
|
25 |
22 24
|
sylibr |
|
26 |
25
|
ad3antrrr |
|
27 |
|
elfznn |
|
28 |
12
|
nfel1 |
|
29 |
13
|
eleq1d |
|
30 |
28 29
|
rspc |
|
31 |
30
|
impcom |
|
32 |
26 27 31
|
syl2an |
|
33 |
15 32
|
fsumcl |
|
34 |
14 33
|
eqeltrid |
|
35 |
|
rpcn |
|
36 |
35
|
adantl |
|
37 |
|
rpne0 |
|
38 |
37
|
adantl |
|
39 |
34 36 38
|
divcld |
|
40 |
|
simplrl |
|
41 |
|
1re |
|
42 |
|
elicopnf |
|
43 |
41 42
|
ax-mp |
|
44 |
40 43
|
sylib |
|
45 |
44
|
simpld |
|
46 |
|
fzfid |
|
47 |
25
|
ad2antrr |
|
48 |
|
elfznn |
|
49 |
47 48 31
|
syl2an |
|
50 |
49
|
abscld |
|
51 |
46 50
|
fsumrecl |
|
52 |
|
simplrr |
|
53 |
51 52
|
readdcld |
|
54 |
34 36 38
|
absdivd |
|
55 |
54
|
adantrr |
|
56 |
|
rprege0 |
|
57 |
56
|
ad2antrl |
|
58 |
|
absid |
|
59 |
57 58
|
syl |
|
60 |
59
|
oveq2d |
|
61 |
55 60
|
eqtrd |
|
62 |
34
|
adantrr |
|
63 |
62
|
abscld |
|
64 |
|
fzfid |
|
65 |
47 27 31
|
syl2an |
|
66 |
65
|
adantlr |
|
67 |
66
|
abscld |
|
68 |
64 67
|
fsumrecl |
|
69 |
57
|
simpld |
|
70 |
51
|
adantr |
|
71 |
52
|
adantr |
|
72 |
70 71
|
readdcld |
|
73 |
69 72
|
remulcld |
|
74 |
14
|
fveq2i |
|
75 |
64 66
|
fsumabs |
|
76 |
74 75
|
eqbrtrid |
|
77 |
|
fzfid |
|
78 |
|
ssun2 |
|
79 |
|
flge1nn |
|
80 |
44 79
|
syl |
|
81 |
80
|
adantr |
|
82 |
81
|
nnred |
|
83 |
45
|
adantr |
|
84 |
|
flle |
|
85 |
83 84
|
syl |
|
86 |
|
simprr |
|
87 |
82 83 69 85 86
|
letrd |
|
88 |
|
fznnfl |
|
89 |
69 88
|
syl |
|
90 |
81 87 89
|
mpbir2and |
|
91 |
|
fzsplit |
|
92 |
90 91
|
syl |
|
93 |
78 92
|
sseqtrrid |
|
94 |
93
|
sselda |
|
95 |
65
|
abscld |
|
96 |
95
|
adantlr |
|
97 |
94 96
|
syldan |
|
98 |
77 97
|
fsumrecl |
|
99 |
69 70
|
remulcld |
|
100 |
69 71
|
remulcld |
|
101 |
70
|
recnd |
|
102 |
101
|
mulid2d |
|
103 |
|
1red |
|
104 |
49
|
absge0d |
|
105 |
46 50 104
|
fsumge0 |
|
106 |
51 105
|
jca |
|
107 |
106
|
adantr |
|
108 |
44
|
simprd |
|
109 |
108
|
adantr |
|
110 |
103 83 69 109 86
|
letrd |
|
111 |
|
lemul1a |
|
112 |
103 69 107 110 111
|
syl31anc |
|
113 |
102 112
|
eqbrtrrd |
|
114 |
|
hashcl |
|
115 |
|
nn0re |
|
116 |
77 114 115
|
3syl |
|
117 |
116 71
|
remulcld |
|
118 |
71
|
adantr |
|
119 |
|
elfzuz |
|
120 |
81
|
peano2nnd |
|
121 |
|
eluznn |
|
122 |
120 121
|
sylan |
|
123 |
|
simpllr |
|
124 |
83
|
adantr |
|
125 |
|
reflcl |
|
126 |
|
peano2re |
|
127 |
124 125 126
|
3syl |
|
128 |
122
|
nnred |
|
129 |
|
fllep1 |
|
130 |
124 129
|
syl |
|
131 |
|
eluzle |
|
132 |
131
|
adantl |
|
133 |
124 127 128 130 132
|
letrd |
|
134 |
|
nfv |
|
135 |
|
nfcv |
|
136 |
135 12
|
nffv |
|
137 |
|
nfcv |
|
138 |
|
nfcv |
|
139 |
136 137 138
|
nfbr |
|
140 |
134 139
|
nfim |
|
141 |
|
breq2 |
|
142 |
13
|
fveq2d |
|
143 |
142
|
breq1d |
|
144 |
141 143
|
imbi12d |
|
145 |
140 144
|
rspc |
|
146 |
122 123 133 145
|
syl3c |
|
147 |
119 146
|
sylan2 |
|
148 |
77 97 118 147
|
fsumle |
|
149 |
71
|
recnd |
|
150 |
|
fsumconst |
|
151 |
77 149 150
|
syl2anc |
|
152 |
148 151
|
breqtrd |
|
153 |
|
biidd |
|
154 |
|
0red |
|
155 |
47 30
|
mpan9 |
|
156 |
155
|
adantlr |
|
157 |
122 156
|
syldan |
|
158 |
157
|
abscld |
|
159 |
71
|
adantr |
|
160 |
157
|
absge0d |
|
161 |
154 158 159 160 146
|
letrd |
|
162 |
161
|
ralrimiva |
|
163 |
120
|
nnzd |
|
164 |
|
uzid |
|
165 |
163 164
|
syl |
|
166 |
153 162 165
|
rspcdva |
|
167 |
|
reflcl |
|
168 |
69 167
|
syl |
|
169 |
|
ssdomg |
|
170 |
64 93 169
|
sylc |
|
171 |
|
hashdomi |
|
172 |
170 171
|
syl |
|
173 |
|
flge0nn0 |
|
174 |
|
hashfz1 |
|
175 |
57 173 174
|
3syl |
|
176 |
172 175
|
breqtrd |
|
177 |
|
flle |
|
178 |
69 177
|
syl |
|
179 |
116 168 69 176 178
|
letrd |
|
180 |
116 69 71 166 179
|
lemul1ad |
|
181 |
98 117 100 152 180
|
letrd |
|
182 |
70 98 99 100 113 181
|
le2addd |
|
183 |
|
ltp1 |
|
184 |
|
fzdisj |
|
185 |
82 183 184
|
3syl |
|
186 |
96
|
recnd |
|
187 |
185 92 64 186
|
fsumsplit |
|
188 |
36
|
adantrr |
|
189 |
188 101 149
|
adddid |
|
190 |
182 187 189
|
3brtr4d |
|
191 |
63 68 73 76 190
|
letrd |
|
192 |
|
rpregt0 |
|
193 |
192
|
ad2antrl |
|
194 |
|
ledivmul |
|
195 |
63 72 193 194
|
syl3anc |
|
196 |
191 195
|
mpbird |
|
197 |
61 196
|
eqbrtrd |
|
198 |
10 39 45 53 197
|
elo1d |
|
199 |
198
|
ex |
|
200 |
199
|
rexlimdvva |
|
201 |
8 200
|
mpd |
|