Metamath Proof Explorer


Theorem o1le

Description: Transfer eventual boundedness from a larger function to a smaller function. (Contributed by Mario Carneiro, 25-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1le.1 φ M
o1le.2 φ x A B 𝑂1
o1le.3 φ x A B V
o1le.4 φ x A C
o1le.5 φ x A M x C B
Assertion o1le φ x A C 𝑂1

Proof

Step Hyp Ref Expression
1 o1le.1 φ M
2 o1le.2 φ x A B 𝑂1
3 o1le.3 φ x A B V
4 o1le.4 φ x A C
5 o1le.5 φ x A M x C B
6 3 2 o1mptrcl φ x A B
7 6 lo1o12 φ x A B 𝑂1 x A B 𝑂1
8 2 7 mpbid φ x A B 𝑂1
9 fvexd φ x A B V
10 4 abscld φ x A C
11 1 8 9 10 5 lo1le φ x A C 𝑂1
12 4 lo1o12 φ x A C 𝑂1 x A C 𝑂1
13 11 12 mpbird φ x A C 𝑂1