Metamath Proof Explorer


Theorem o1lo1

Description: A real function is eventually bounded iff it is eventually lower bounded and eventually upper bounded. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypothesis o1lo1.1 φ x A B
Assertion o1lo1 φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1

Proof

Step Hyp Ref Expression
1 o1lo1.1 φ x A B
2 o1dm x A B 𝑂1 dom x A B
3 2 a1i φ x A B 𝑂1 dom x A B
4 lo1dm x A B 𝑂1 dom x A B
5 4 adantr x A B 𝑂1 x A B 𝑂1 dom x A B
6 5 a1i φ x A B 𝑂1 x A B 𝑂1 dom x A B
7 1 ralrimiva φ x A B
8 dmmptg x A B dom x A B = A
9 7 8 syl φ dom x A B = A
10 9 sseq1d φ dom x A B A
11 simpr φ A m m
12 1 adantlr φ A x A B
13 12 adantlr φ A m x A B
14 simplr φ A m x A m
15 13 14 absled φ A m x A B m m B B m
16 ancom m B B m B m m B
17 lenegcon1 m B m B B m
18 14 13 17 syl2anc φ A m x A m B B m
19 18 anbi2d φ A m x A B m m B B m B m
20 16 19 syl5bb φ A m x A m B B m B m B m
21 15 20 bitrd φ A m x A B m B m B m
22 21 imbi2d φ A m x A c x B m c x B m B m
23 22 ralbidva φ A m x A c x B m x A c x B m B m
24 23 rexbidv φ A m c x A c x B m c x A c x B m B m
25 24 biimpd φ A m c x A c x B m c x A c x B m B m
26 breq2 n = m B n B m
27 26 anbi1d n = m B n B p B m B p
28 27 imbi2d n = m c x B n B p c x B m B p
29 28 rexralbidv n = m c x A c x B n B p c x A c x B m B p
30 breq2 p = m B p B m
31 30 anbi2d p = m B m B p B m B m
32 31 imbi2d p = m c x B m B p c x B m B m
33 32 rexralbidv p = m c x A c x B m B p c x A c x B m B m
34 29 33 rspc2ev m m c x A c x B m B m n p c x A c x B n B p
35 34 3anidm12 m c x A c x B m B m n p c x A c x B n B p
36 11 25 35 syl6an φ A m c x A c x B m n p c x A c x B n B p
37 36 rexlimdva φ A m c x A c x B m n p c x A c x B n B p
38 simplrr φ A n p n p p
39 simplrl φ A n p ¬ n p n
40 38 39 ifclda φ A n p if n p p n
41 max2 n p p if n p p n
42 41 ad2antlr φ A n p x A p if n p p n
43 12 adantlr φ A n p x A B
44 43 renegcld φ A n p x A B
45 simplrr φ A n p x A p
46 simplrl φ A n p x A n
47 45 46 ifcld φ A n p x A if n p p n
48 letr B p if n p p n B p p if n p p n B if n p p n
49 44 45 47 48 syl3anc φ A n p x A B p p if n p p n B if n p p n
50 42 49 mpan2d φ A n p x A B p B if n p p n
51 lenegcon1 B if n p p n B if n p p n if n p p n B
52 43 47 51 syl2anc φ A n p x A B if n p p n if n p p n B
53 50 52 sylibd φ A n p x A B p if n p p n B
54 max1 n p n if n p p n
55 54 ad2antlr φ A n p x A n if n p p n
56 letr B n if n p p n B n n if n p p n B if n p p n
57 43 46 47 56 syl3anc φ A n p x A B n n if n p p n B if n p p n
58 55 57 mpan2d φ A n p x A B n B if n p p n
59 53 58 anim12d φ A n p x A B p B n if n p p n B B if n p p n
60 59 ancomsd φ A n p x A B n B p if n p p n B B if n p p n
61 43 47 absled φ A n p x A B if n p p n if n p p n B B if n p p n
62 60 61 sylibrd φ A n p x A B n B p B if n p p n
63 62 imim2d φ A n p x A c x B n B p c x B if n p p n
64 63 ralimdva φ A n p x A c x B n B p x A c x B if n p p n
65 64 reximdv φ A n p c x A c x B n B p c x A c x B if n p p n
66 breq2 m = if n p p n B m B if n p p n
67 66 imbi2d m = if n p p n c x B m c x B if n p p n
68 67 rexralbidv m = if n p p n c x A c x B m c x A c x B if n p p n
69 68 rspcev if n p p n c x A c x B if n p p n m c x A c x B m
70 40 65 69 syl6an φ A n p c x A c x B n B p m c x A c x B m
71 70 rexlimdvva φ A n p c x A c x B n B p m c x A c x B m
72 37 71 impbid φ A m c x A c x B m n p c x A c x B n B p
73 rexanre A c x A c x B n B p c x A c x B n c x A c x B p
74 73 adantl φ A c x A c x B n B p c x A c x B n c x A c x B p
75 74 2rexbidv φ A n p c x A c x B n B p n p c x A c x B n c x A c x B p
76 72 75 bitrd φ A m c x A c x B m n p c x A c x B n c x A c x B p
77 reeanv n p c x A c x B n c x A c x B p n c x A c x B n p c x A c x B p
78 76 77 bitrdi φ A m c x A c x B m n c x A c x B n p c x A c x B p
79 rexcom c m x A c x B m m c x A c x B m
80 rexcom c n x A c x B n n c x A c x B n
81 rexcom c p x A c x B p p c x A c x B p
82 80 81 anbi12i c n x A c x B n c p x A c x B p n c x A c x B n p c x A c x B p
83 78 79 82 3bitr4g φ A c m x A c x B m c n x A c x B n c p x A c x B p
84 simpr φ A A
85 12 recnd φ A x A B
86 84 85 elo1mpt φ A x A B 𝑂1 c m x A c x B m
87 84 12 ello1mpt φ A x A B 𝑂1 c n x A c x B n
88 12 renegcld φ A x A B
89 84 88 ello1mpt φ A x A B 𝑂1 c p x A c x B p
90 87 89 anbi12d φ A x A B 𝑂1 x A B 𝑂1 c n x A c x B n c p x A c x B p
91 83 86 90 3bitr4d φ A x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
92 91 ex φ A x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
93 10 92 sylbid φ dom x A B x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
94 3 6 93 pm5.21ndd φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1