Metamath Proof Explorer


Theorem o1lo1d

Description: A real eventually bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1lo1.1 φ x A B
lo1o1.1 φ x A B 𝑂1
Assertion o1lo1d φ x A B 𝑂1

Proof

Step Hyp Ref Expression
1 o1lo1.1 φ x A B
2 lo1o1.1 φ x A B 𝑂1
3 1 o1lo1 φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
4 2 3 mpbid φ x A B 𝑂1 x A B 𝑂1
5 4 simpld φ x A B 𝑂1