Metamath Proof Explorer


Theorem o1of2

Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses o1of2.1 m n M
o1of2.2 x y x R y
o1of2.3 m n x y x m y n x R y M
Assertion o1of2 F 𝑂1 G 𝑂1 F R f G 𝑂1

Proof

Step Hyp Ref Expression
1 o1of2.1 m n M
2 o1of2.2 x y x R y
3 o1of2.3 m n x y x m y n x R y M
4 o1f F 𝑂1 F : dom F
5 o1bdd F 𝑂1 F : dom F a m z dom F a z F z m
6 4 5 mpdan F 𝑂1 a m z dom F a z F z m
7 6 adantr F 𝑂1 G 𝑂1 a m z dom F a z F z m
8 o1f G 𝑂1 G : dom G
9 o1bdd G 𝑂1 G : dom G b n z dom G b z G z n
10 8 9 mpdan G 𝑂1 b n z dom G b z G z n
11 10 adantl F 𝑂1 G 𝑂1 b n z dom G b z G z n
12 reeanv a b m z dom F a z F z m n z dom G b z G z n a m z dom F a z F z m b n z dom G b z G z n
13 reeanv m n z dom F a z F z m z dom G b z G z n m z dom F a z F z m n z dom G b z G z n
14 inss1 dom F dom G dom F
15 ssralv dom F dom G dom F z dom F a z F z m z dom F dom G a z F z m
16 14 15 ax-mp z dom F a z F z m z dom F dom G a z F z m
17 inss2 dom F dom G dom G
18 ssralv dom F dom G dom G z dom G b z G z n z dom F dom G b z G z n
19 17 18 ax-mp z dom G b z G z n z dom F dom G b z G z n
20 16 19 anim12i z dom F a z F z m z dom G b z G z n z dom F dom G a z F z m z dom F dom G b z G z n
21 r19.26 z dom F dom G a z F z m b z G z n z dom F dom G a z F z m z dom F dom G b z G z n
22 20 21 sylibr z dom F a z F z m z dom G b z G z n z dom F dom G a z F z m b z G z n
23 anim12 a z F z m b z G z n a z b z F z m G z n
24 simplrl F 𝑂1 G 𝑂1 a b m n a
25 24 adantr F 𝑂1 G 𝑂1 a b m n z dom F dom G a
26 simplrr F 𝑂1 G 𝑂1 a b m n b
27 26 adantr F 𝑂1 G 𝑂1 a b m n z dom F dom G b
28 o1dm F 𝑂1 dom F
29 28 ad3antrrr F 𝑂1 G 𝑂1 a b m n dom F
30 14 29 sstrid F 𝑂1 G 𝑂1 a b m n dom F dom G
31 30 sselda F 𝑂1 G 𝑂1 a b m n z dom F dom G z
32 maxle a b z if a b b a z a z b z
33 25 27 31 32 syl3anc F 𝑂1 G 𝑂1 a b m n z dom F dom G if a b b a z a z b z
34 33 biimpd F 𝑂1 G 𝑂1 a b m n z dom F dom G if a b b a z a z b z
35 4 ad3antrrr F 𝑂1 G 𝑂1 a b m n F : dom F
36 14 sseli z dom F dom G z dom F
37 ffvelrn F : dom F z dom F F z
38 35 36 37 syl2an F 𝑂1 G 𝑂1 a b m n z dom F dom G F z
39 8 ad3antlr F 𝑂1 G 𝑂1 a b m n G : dom G
40 17 sseli z dom F dom G z dom G
41 ffvelrn G : dom G z dom G G z
42 39 40 41 syl2an F 𝑂1 G 𝑂1 a b m n z dom F dom G G z
43 3 ralrimivva m n x y x m y n x R y M
44 43 ad2antlr F 𝑂1 G 𝑂1 a b m n z dom F dom G x y x m y n x R y M
45 fveq2 x = F z x = F z
46 45 breq1d x = F z x m F z m
47 46 anbi1d x = F z x m y n F z m y n
48 fvoveq1 x = F z x R y = F z R y
49 48 breq1d x = F z x R y M F z R y M
50 47 49 imbi12d x = F z x m y n x R y M F z m y n F z R y M
51 fveq2 y = G z y = G z
52 51 breq1d y = G z y n G z n
53 52 anbi2d y = G z F z m y n F z m G z n
54 oveq2 y = G z F z R y = F z R G z
55 54 fveq2d y = G z F z R y = F z R G z
56 55 breq1d y = G z F z R y M F z R G z M
57 53 56 imbi12d y = G z F z m y n F z R y M F z m G z n F z R G z M
58 50 57 rspc2va F z G z x y x m y n x R y M F z m G z n F z R G z M
59 38 42 44 58 syl21anc F 𝑂1 G 𝑂1 a b m n z dom F dom G F z m G z n F z R G z M
60 35 ffnd F 𝑂1 G 𝑂1 a b m n F Fn dom F
61 39 ffnd F 𝑂1 G 𝑂1 a b m n G Fn dom G
62 reex V
63 ssexg dom F V dom F V
64 29 62 63 sylancl F 𝑂1 G 𝑂1 a b m n dom F V
65 dmexg G 𝑂1 dom G V
66 65 ad3antlr F 𝑂1 G 𝑂1 a b m n dom G V
67 eqid dom F dom G = dom F dom G
68 eqidd F 𝑂1 G 𝑂1 a b m n z dom F F z = F z
69 eqidd F 𝑂1 G 𝑂1 a b m n z dom G G z = G z
70 60 61 64 66 67 68 69 ofval F 𝑂1 G 𝑂1 a b m n z dom F dom G F R f G z = F z R G z
71 70 fveq2d F 𝑂1 G 𝑂1 a b m n z dom F dom G F R f G z = F z R G z
72 71 breq1d F 𝑂1 G 𝑂1 a b m n z dom F dom G F R f G z M F z R G z M
73 59 72 sylibrd F 𝑂1 G 𝑂1 a b m n z dom F dom G F z m G z n F R f G z M
74 34 73 imim12d F 𝑂1 G 𝑂1 a b m n z dom F dom G a z b z F z m G z n if a b b a z F R f G z M
75 23 74 syl5 F 𝑂1 G 𝑂1 a b m n z dom F dom G a z F z m b z G z n if a b b a z F R f G z M
76 75 ralimdva F 𝑂1 G 𝑂1 a b m n z dom F dom G a z F z m b z G z n z dom F dom G if a b b a z F R f G z M
77 2 adantl F 𝑂1 G 𝑂1 a b m n x y x R y
78 77 35 39 64 66 67 off F 𝑂1 G 𝑂1 a b m n F R f G : dom F dom G
79 26 24 ifcld F 𝑂1 G 𝑂1 a b m n if a b b a
80 1 adantl F 𝑂1 G 𝑂1 a b m n M
81 elo12r F R f G : dom F dom G dom F dom G if a b b a M z dom F dom G if a b b a z F R f G z M F R f G 𝑂1
82 81 3expia F R f G : dom F dom G dom F dom G if a b b a M z dom F dom G if a b b a z F R f G z M F R f G 𝑂1
83 78 30 79 80 82 syl22anc F 𝑂1 G 𝑂1 a b m n z dom F dom G if a b b a z F R f G z M F R f G 𝑂1
84 76 83 syld F 𝑂1 G 𝑂1 a b m n z dom F dom G a z F z m b z G z n F R f G 𝑂1
85 22 84 syl5 F 𝑂1 G 𝑂1 a b m n z dom F a z F z m z dom G b z G z n F R f G 𝑂1
86 85 rexlimdvva F 𝑂1 G 𝑂1 a b m n z dom F a z F z m z dom G b z G z n F R f G 𝑂1
87 13 86 syl5bir F 𝑂1 G 𝑂1 a b m z dom F a z F z m n z dom G b z G z n F R f G 𝑂1
88 87 rexlimdvva F 𝑂1 G 𝑂1 a b m z dom F a z F z m n z dom G b z G z n F R f G 𝑂1
89 12 88 syl5bir F 𝑂1 G 𝑂1 a m z dom F a z F z m b n z dom G b z G z n F R f G 𝑂1
90 7 11 89 mp2and F 𝑂1 G 𝑂1 F R f G 𝑂1