Metamath Proof Explorer


Theorem o1res

Description: The restriction of an eventually bounded function is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion o1res F 𝑂1 F A 𝑂1

Proof

Step Hyp Ref Expression
1 resco abs F A = abs F A
2 o1f F 𝑂1 F : dom F
3 lo1o1 F : dom F F 𝑂1 abs F 𝑂1
4 2 3 syl F 𝑂1 F 𝑂1 abs F 𝑂1
5 4 ibi F 𝑂1 abs F 𝑂1
6 lo1res abs F 𝑂1 abs F A 𝑂1
7 5 6 syl F 𝑂1 abs F A 𝑂1
8 1 7 eqeltrrid F 𝑂1 abs F A 𝑂1
9 fresin F : dom F F A : dom F A
10 lo1o1 F A : dom F A F A 𝑂1 abs F A 𝑂1
11 2 9 10 3syl F 𝑂1 F A 𝑂1 abs F A 𝑂1
12 8 11 mpbird F 𝑂1 F A 𝑂1