Metamath Proof Explorer


Theorem o1res2

Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Hypotheses rlimres2.1 φ A B
o1res2.2 φ x B C 𝑂1
Assertion o1res2 φ x A C 𝑂1

Proof

Step Hyp Ref Expression
1 rlimres2.1 φ A B
2 o1res2.2 φ x B C 𝑂1
3 1 resmptd φ x B C A = x A C
4 o1res x B C 𝑂1 x B C A 𝑂1
5 2 4 syl φ x B C A 𝑂1
6 3 5 eqeltrrd φ x A C 𝑂1