Step |
Hyp |
Ref |
Expression |
1 |
|
rlimresb.1 |
|
2 |
|
rlimresb.2 |
|
3 |
|
rlimresb.3 |
|
4 |
|
o1res |
|
5 |
1
|
feqmptd |
|
6 |
5
|
reseq1d |
|
7 |
|
resmpt3 |
|
8 |
6 7
|
eqtrdi |
|
9 |
8
|
eleq1d |
|
10 |
|
inss1 |
|
11 |
10 2
|
sstrid |
|
12 |
|
elinel1 |
|
13 |
|
ffvelrn |
|
14 |
1 12 13
|
syl2an |
|
15 |
11 14
|
elo1mpt |
|
16 |
|
elin |
|
17 |
16
|
imbi1i |
|
18 |
|
impexp |
|
19 |
17 18
|
bitri |
|
20 |
|
impexp |
|
21 |
3
|
ad2antrr |
|
22 |
2
|
adantr |
|
23 |
22
|
sselda |
|
24 |
|
elicopnf |
|
25 |
24
|
baibd |
|
26 |
21 23 25
|
syl2anc |
|
27 |
26
|
anbi1d |
|
28 |
|
simplrl |
|
29 |
|
maxle |
|
30 |
21 28 23 29
|
syl3anc |
|
31 |
27 30
|
bitr4d |
|
32 |
31
|
imbi1d |
|
33 |
20 32
|
bitr3id |
|
34 |
33
|
pm5.74da |
|
35 |
19 34
|
syl5bb |
|
36 |
35
|
ralbidv2 |
|
37 |
1
|
adantr |
|
38 |
|
simprl |
|
39 |
3
|
adantr |
|
40 |
38 39
|
ifcld |
|
41 |
|
simprr |
|
42 |
|
elo12r |
|
43 |
42
|
3expia |
|
44 |
37 22 40 41 43
|
syl22anc |
|
45 |
36 44
|
sylbid |
|
46 |
45
|
rexlimdvva |
|
47 |
15 46
|
sylbid |
|
48 |
9 47
|
sylbid |
|
49 |
4 48
|
impbid2 |
|