Step |
Hyp |
Ref |
Expression |
1 |
|
o1f |
|
2 |
1
|
adantr |
|
3 |
2
|
ffnd |
|
4 |
|
rlimf |
|
5 |
4
|
adantl |
|
6 |
5
|
ffnd |
|
7 |
|
o1dm |
|
8 |
7
|
adantr |
|
9 |
|
reex |
|
10 |
|
ssexg |
|
11 |
8 9 10
|
sylancl |
|
12 |
|
rlimss |
|
13 |
12
|
adantl |
|
14 |
|
ssexg |
|
15 |
13 9 14
|
sylancl |
|
16 |
|
eqid |
|
17 |
|
eqidd |
|
18 |
|
eqidd |
|
19 |
3 6 11 15 16 17 18
|
offval |
|
20 |
|
o1bdd |
|
21 |
1 20
|
mpdan |
|
22 |
21
|
ad2antrr |
|
23 |
|
fvexd |
|
24 |
23
|
ralrimiva |
|
25 |
|
simplr |
|
26 |
|
recn |
|
27 |
26
|
ad2antll |
|
28 |
27
|
abscld |
|
29 |
27
|
absge0d |
|
30 |
28 29
|
ge0p1rpd |
|
31 |
25 30
|
rpdivcld |
|
32 |
5
|
feqmptd |
|
33 |
|
simpr |
|
34 |
32 33
|
eqbrtrrd |
|
35 |
34
|
ad2antrr |
|
36 |
24 31 35
|
rlimi |
|
37 |
|
inss1 |
|
38 |
|
ssralv |
|
39 |
37 38
|
ax-mp |
|
40 |
|
inss2 |
|
41 |
|
ssralv |
|
42 |
40 41
|
ax-mp |
|
43 |
39 42
|
anim12i |
|
44 |
|
r19.26 |
|
45 |
43 44
|
sylibr |
|
46 |
|
anim12 |
|
47 |
46
|
ralimi |
|
48 |
45 47
|
syl |
|
49 |
|
simplrl |
|
50 |
|
simprl |
|
51 |
37 8
|
sstrid |
|
52 |
51
|
ad3antrrr |
|
53 |
|
simprr |
|
54 |
52 53
|
sseldd |
|
55 |
|
maxle |
|
56 |
49 50 54 55
|
syl3anc |
|
57 |
56
|
biimpd |
|
58 |
5
|
ad3antrrr |
|
59 |
40
|
sseli |
|
60 |
59
|
ad2antll |
|
61 |
58 60
|
ffvelrnd |
|
62 |
61
|
subid1d |
|
63 |
62
|
fveq2d |
|
64 |
63
|
breq1d |
|
65 |
61
|
abscld |
|
66 |
31
|
adantr |
|
67 |
66
|
rpred |
|
68 |
|
ltle |
|
69 |
65 67 68
|
syl2anc |
|
70 |
64 69
|
sylbid |
|
71 |
70
|
anim2d |
|
72 |
2
|
ad3antrrr |
|
73 |
37
|
sseli |
|
74 |
73
|
ad2antll |
|
75 |
72 74
|
ffvelrnd |
|
76 |
75
|
abscld |
|
77 |
75
|
absge0d |
|
78 |
76 77
|
jca |
|
79 |
|
simplrr |
|
80 |
61
|
absge0d |
|
81 |
65 80
|
jca |
|
82 |
|
lemul12a |
|
83 |
78 79 81 67 82
|
syl22anc |
|
84 |
75 61
|
absmuld |
|
85 |
84
|
breq1d |
|
86 |
79
|
recnd |
|
87 |
25
|
adantr |
|
88 |
87
|
rpcnd |
|
89 |
30
|
adantr |
|
90 |
89
|
rpcnd |
|
91 |
89
|
rpne0d |
|
92 |
86 88 90 91
|
divassd |
|
93 |
|
peano2re |
|
94 |
28 93
|
syl |
|
95 |
94
|
adantr |
|
96 |
28
|
adantr |
|
97 |
79
|
leabsd |
|
98 |
96
|
ltp1d |
|
99 |
79 96 95 97 98
|
lelttrd |
|
100 |
79 95 87 99
|
ltmul1dd |
|
101 |
87
|
rpred |
|
102 |
79 101
|
remulcld |
|
103 |
102 101 89
|
ltdivmuld |
|
104 |
100 103
|
mpbird |
|
105 |
92 104
|
eqbrtrrd |
|
106 |
75 61
|
mulcld |
|
107 |
106
|
abscld |
|
108 |
79 67
|
remulcld |
|
109 |
|
lelttr |
|
110 |
107 108 101 109
|
syl3anc |
|
111 |
105 110
|
mpan2d |
|
112 |
85 111
|
sylbird |
|
113 |
71 83 112
|
3syld |
|
114 |
57 113
|
imim12d |
|
115 |
114
|
anassrs |
|
116 |
115
|
ralimdva |
|
117 |
|
simpr |
|
118 |
|
simplrl |
|
119 |
117 118
|
ifcld |
|
120 |
116 119
|
jctild |
|
121 |
|
breq1 |
|
122 |
121
|
rspceaimv |
|
123 |
48 120 122
|
syl56 |
|
124 |
123
|
expcomd |
|
125 |
124
|
rexlimdva |
|
126 |
36 125
|
mpd |
|
127 |
126
|
rexlimdvva |
|
128 |
22 127
|
mpd |
|
129 |
128
|
ralrimiva |
|
130 |
|
ffvelrn |
|
131 |
2 73 130
|
syl2an |
|
132 |
|
ffvelrn |
|
133 |
5 59 132
|
syl2an |
|
134 |
131 133
|
mulcld |
|
135 |
134
|
ralrimiva |
|
136 |
135 51
|
rlim0 |
|
137 |
129 136
|
mpbird |
|
138 |
19 137
|
eqbrtrd |
|