Metamath Proof Explorer


Theorem o2p2e4

Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc . For the usual proof using complex numbers, see 2p2e4 . (Contributed by NM, 18-Aug-2021) Avoid ax-rep , from a comment by Sophie. (Revised by SN, 23-Mar-2024)

Ref Expression
Assertion o2p2e4 2 𝑜 + 𝑜 2 𝑜 = 4 𝑜

Proof

Step Hyp Ref Expression
1 2on 2 𝑜 On
2 df-1o 1 𝑜 = suc
3 peano1 ω
4 peano2 ω suc ω
5 3 4 ax-mp suc ω
6 2 5 eqeltri 1 𝑜 ω
7 onasuc 2 𝑜 On 1 𝑜 ω 2 𝑜 + 𝑜 suc 1 𝑜 = suc 2 𝑜 + 𝑜 1 𝑜
8 1 6 7 mp2an 2 𝑜 + 𝑜 suc 1 𝑜 = suc 2 𝑜 + 𝑜 1 𝑜
9 df-2o 2 𝑜 = suc 1 𝑜
10 9 oveq2i 2 𝑜 + 𝑜 2 𝑜 = 2 𝑜 + 𝑜 suc 1 𝑜
11 df-3o 3 𝑜 = suc 2 𝑜
12 oa1suc 2 𝑜 On 2 𝑜 + 𝑜 1 𝑜 = suc 2 𝑜
13 1 12 ax-mp 2 𝑜 + 𝑜 1 𝑜 = suc 2 𝑜
14 11 13 eqtr4i 3 𝑜 = 2 𝑜 + 𝑜 1 𝑜
15 suceq 3 𝑜 = 2 𝑜 + 𝑜 1 𝑜 suc 3 𝑜 = suc 2 𝑜 + 𝑜 1 𝑜
16 14 15 ax-mp suc 3 𝑜 = suc 2 𝑜 + 𝑜 1 𝑜
17 8 10 16 3eqtr4i 2 𝑜 + 𝑜 2 𝑜 = suc 3 𝑜
18 df-4o 4 𝑜 = suc 3 𝑜
19 17 18 eqtr4i 2 𝑜 + 𝑜 2 𝑜 = 4 𝑜