Metamath Proof Explorer


Theorem oa0r

Description: Ordinal addition with zero. Proposition 8.3 of TakeutiZaring p. 57. (Contributed by NM, 5-May-1995)

Ref Expression
Assertion oa0r A On + 𝑜 A = A

Proof

Step Hyp Ref Expression
1 oveq2 x = + 𝑜 x = + 𝑜
2 id x = x =
3 1 2 eqeq12d x = + 𝑜 x = x + 𝑜 =
4 oveq2 x = y + 𝑜 x = + 𝑜 y
5 id x = y x = y
6 4 5 eqeq12d x = y + 𝑜 x = x + 𝑜 y = y
7 oveq2 x = suc y + 𝑜 x = + 𝑜 suc y
8 id x = suc y x = suc y
9 7 8 eqeq12d x = suc y + 𝑜 x = x + 𝑜 suc y = suc y
10 oveq2 x = A + 𝑜 x = + 𝑜 A
11 id x = A x = A
12 10 11 eqeq12d x = A + 𝑜 x = x + 𝑜 A = A
13 0elon On
14 oa0 On + 𝑜 =
15 13 14 ax-mp + 𝑜 =
16 oasuc On y On + 𝑜 suc y = suc + 𝑜 y
17 13 16 mpan y On + 𝑜 suc y = suc + 𝑜 y
18 suceq + 𝑜 y = y suc + 𝑜 y = suc y
19 17 18 sylan9eq y On + 𝑜 y = y + 𝑜 suc y = suc y
20 19 ex y On + 𝑜 y = y + 𝑜 suc y = suc y
21 iuneq2 y x + 𝑜 y = y y x + 𝑜 y = y x y
22 uniiun x = y x y
23 21 22 eqtr4di y x + 𝑜 y = y y x + 𝑜 y = x
24 vex x V
25 oalim On x V Lim x + 𝑜 x = y x + 𝑜 y
26 13 25 mpan x V Lim x + 𝑜 x = y x + 𝑜 y
27 24 26 mpan Lim x + 𝑜 x = y x + 𝑜 y
28 limuni Lim x x = x
29 27 28 eqeq12d Lim x + 𝑜 x = x y x + 𝑜 y = x
30 23 29 syl5ibr Lim x y x + 𝑜 y = y + 𝑜 x = x
31 3 6 9 12 15 20 30 tfinds A On + 𝑜 A = A