Metamath Proof Explorer


Theorem oaabslem

Description: Lemma for oaabs . (Contributed by NM, 9-Dec-2004)

Ref Expression
Assertion oaabslem ω On A ω A + 𝑜 ω = ω

Proof

Step Hyp Ref Expression
1 nnon A ω A On
2 limom Lim ω
3 2 jctr ω On ω On Lim ω
4 oalim A On ω On Lim ω A + 𝑜 ω = x ω A + 𝑜 x
5 1 3 4 syl2an A ω ω On A + 𝑜 ω = x ω A + 𝑜 x
6 ordom Ord ω
7 nnacl A ω x ω A + 𝑜 x ω
8 ordelss Ord ω A + 𝑜 x ω A + 𝑜 x ω
9 6 7 8 sylancr A ω x ω A + 𝑜 x ω
10 9 ralrimiva A ω x ω A + 𝑜 x ω
11 iunss x ω A + 𝑜 x ω x ω A + 𝑜 x ω
12 10 11 sylibr A ω x ω A + 𝑜 x ω
13 12 adantr A ω ω On x ω A + 𝑜 x ω
14 5 13 eqsstrd A ω ω On A + 𝑜 ω ω
15 14 ancoms ω On A ω A + 𝑜 ω ω
16 oaword2 ω On A On ω A + 𝑜 ω
17 1 16 sylan2 ω On A ω ω A + 𝑜 ω
18 15 17 eqssd ω On A ω A + 𝑜 ω = ω