Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural number arithmetic
oaabslem
Next ⟩
oaabs
Metamath Proof Explorer
Ascii
Unicode
Theorem
oaabslem
Description:
Lemma for
oaabs
.
(Contributed by
NM
, 9-Dec-2004)
Ref
Expression
Assertion
oaabslem
⊢
ω
∈
On
∧
A
∈
ω
→
A
+
𝑜
ω
=
ω
Proof
Step
Hyp
Ref
Expression
1
nnon
⊢
A
∈
ω
→
A
∈
On
2
limom
⊢
Lim
⁡
ω
3
2
jctr
⊢
ω
∈
On
→
ω
∈
On
∧
Lim
⁡
ω
4
oalim
⊢
A
∈
On
∧
ω
∈
On
∧
Lim
⁡
ω
→
A
+
𝑜
ω
=
⋃
x
∈
ω
A
+
𝑜
x
5
1
3
4
syl2an
⊢
A
∈
ω
∧
ω
∈
On
→
A
+
𝑜
ω
=
⋃
x
∈
ω
A
+
𝑜
x
6
ordom
⊢
Ord
⁡
ω
7
nnacl
⊢
A
∈
ω
∧
x
∈
ω
→
A
+
𝑜
x
∈
ω
8
ordelss
⊢
Ord
⁡
ω
∧
A
+
𝑜
x
∈
ω
→
A
+
𝑜
x
⊆
ω
9
6
7
8
sylancr
⊢
A
∈
ω
∧
x
∈
ω
→
A
+
𝑜
x
⊆
ω
10
9
ralrimiva
⊢
A
∈
ω
→
∀
x
∈
ω
A
+
𝑜
x
⊆
ω
11
iunss
⊢
⋃
x
∈
ω
A
+
𝑜
x
⊆
ω
↔
∀
x
∈
ω
A
+
𝑜
x
⊆
ω
12
10
11
sylibr
⊢
A
∈
ω
→
⋃
x
∈
ω
A
+
𝑜
x
⊆
ω
13
12
adantr
⊢
A
∈
ω
∧
ω
∈
On
→
⋃
x
∈
ω
A
+
𝑜
x
⊆
ω
14
5
13
eqsstrd
⊢
A
∈
ω
∧
ω
∈
On
→
A
+
𝑜
ω
⊆
ω
15
14
ancoms
⊢
ω
∈
On
∧
A
∈
ω
→
A
+
𝑜
ω
⊆
ω
16
oaword2
⊢
ω
∈
On
∧
A
∈
On
→
ω
⊆
A
+
𝑜
ω
17
1
16
sylan2
⊢
ω
∈
On
∧
A
∈
ω
→
ω
⊆
A
+
𝑜
ω
18
15
17
eqssd
⊢
ω
∈
On
∧
A
∈
ω
→
A
+
𝑜
ω
=
ω