Metamath Proof Explorer


Theorem oaass

Description: Ordinal addition is associative. Theorem 25 of Suppes p. 211. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion oaass A On B On C On A + 𝑜 B + 𝑜 C = A + 𝑜 B + 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜
2 oveq2 x = B + 𝑜 x = B + 𝑜
3 2 oveq2d x = A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜
4 1 3 eqeq12d x = A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x A + 𝑜 B + 𝑜 = A + 𝑜 B + 𝑜
5 oveq2 x = y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 y
6 oveq2 x = y B + 𝑜 x = B + 𝑜 y
7 6 oveq2d x = y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 y
8 5 7 eqeq12d x = y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y
9 oveq2 x = suc y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 suc y
10 oveq2 x = suc y B + 𝑜 x = B + 𝑜 suc y
11 10 oveq2d x = suc y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 suc y
12 9 11 eqeq12d x = suc y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x A + 𝑜 B + 𝑜 suc y = A + 𝑜 B + 𝑜 suc y
13 oveq2 x = C A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 C
14 oveq2 x = C B + 𝑜 x = B + 𝑜 C
15 14 oveq2d x = C A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 C
16 13 15 eqeq12d x = C A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x A + 𝑜 B + 𝑜 C = A + 𝑜 B + 𝑜 C
17 oacl A On B On A + 𝑜 B On
18 oa0 A + 𝑜 B On A + 𝑜 B + 𝑜 = A + 𝑜 B
19 17 18 syl A On B On A + 𝑜 B + 𝑜 = A + 𝑜 B
20 oa0 B On B + 𝑜 = B
21 20 oveq2d B On A + 𝑜 B + 𝑜 = A + 𝑜 B
22 21 adantl A On B On A + 𝑜 B + 𝑜 = A + 𝑜 B
23 19 22 eqtr4d A On B On A + 𝑜 B + 𝑜 = A + 𝑜 B + 𝑜
24 suceq A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y suc A + 𝑜 B + 𝑜 y = suc A + 𝑜 B + 𝑜 y
25 oasuc A + 𝑜 B On y On A + 𝑜 B + 𝑜 suc y = suc A + 𝑜 B + 𝑜 y
26 17 25 sylan A On B On y On A + 𝑜 B + 𝑜 suc y = suc A + 𝑜 B + 𝑜 y
27 oasuc B On y On B + 𝑜 suc y = suc B + 𝑜 y
28 27 oveq2d B On y On A + 𝑜 B + 𝑜 suc y = A + 𝑜 suc B + 𝑜 y
29 28 adantl A On B On y On A + 𝑜 B + 𝑜 suc y = A + 𝑜 suc B + 𝑜 y
30 oacl B On y On B + 𝑜 y On
31 oasuc A On B + 𝑜 y On A + 𝑜 suc B + 𝑜 y = suc A + 𝑜 B + 𝑜 y
32 30 31 sylan2 A On B On y On A + 𝑜 suc B + 𝑜 y = suc A + 𝑜 B + 𝑜 y
33 29 32 eqtrd A On B On y On A + 𝑜 B + 𝑜 suc y = suc A + 𝑜 B + 𝑜 y
34 33 anassrs A On B On y On A + 𝑜 B + 𝑜 suc y = suc A + 𝑜 B + 𝑜 y
35 26 34 eqeq12d A On B On y On A + 𝑜 B + 𝑜 suc y = A + 𝑜 B + 𝑜 suc y suc A + 𝑜 B + 𝑜 y = suc A + 𝑜 B + 𝑜 y
36 24 35 syl5ibr A On B On y On A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 suc y = A + 𝑜 B + 𝑜 suc y
37 36 expcom y On A On B On A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 suc y = A + 𝑜 B + 𝑜 suc y
38 iuneq2 y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y y x A + 𝑜 B + 𝑜 y = y x A + 𝑜 B + 𝑜 y
39 38 adantl Lim x A On B On y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y y x A + 𝑜 B + 𝑜 y = y x A + 𝑜 B + 𝑜 y
40 vex x V
41 oalim A + 𝑜 B On x V Lim x A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
42 40 41 mpanr1 A + 𝑜 B On Lim x A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
43 17 42 sylan A On B On Lim x A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
44 43 ancoms Lim x A On B On A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
45 44 adantr Lim x A On B On y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
46 oalimcl B On x V Lim x Lim B + 𝑜 x
47 40 46 mpanr1 B On Lim x Lim B + 𝑜 x
48 47 ancoms Lim x B On Lim B + 𝑜 x
49 ovex B + 𝑜 x V
50 oalim A On B + 𝑜 x V Lim B + 𝑜 x A + 𝑜 B + 𝑜 x = z B + 𝑜 x A + 𝑜 z
51 49 50 mpanr1 A On Lim B + 𝑜 x A + 𝑜 B + 𝑜 x = z B + 𝑜 x A + 𝑜 z
52 48 51 sylan2 A On Lim x B On A + 𝑜 B + 𝑜 x = z B + 𝑜 x A + 𝑜 z
53 limelon x V Lim x x On
54 40 53 mpan Lim x x On
55 oacl B On x On B + 𝑜 x On
56 55 ancoms x On B On B + 𝑜 x On
57 onelon B + 𝑜 x On z B + 𝑜 x z On
58 57 ex B + 𝑜 x On z B + 𝑜 x z On
59 56 58 syl x On B On z B + 𝑜 x z On
60 59 adantld x On B On A On z B + 𝑜 x z On
61 60 adantl Lim x x On B On A On z B + 𝑜 x z On
62 0ellim Lim x x
63 onelss B On z B z B
64 20 sseq2d B On z B + 𝑜 z B
65 63 64 sylibrd B On z B z B + 𝑜
66 65 imp B On z B z B + 𝑜
67 oveq2 y = B + 𝑜 y = B + 𝑜
68 67 sseq2d y = z B + 𝑜 y z B + 𝑜
69 68 rspcev x z B + 𝑜 y x z B + 𝑜 y
70 62 66 69 syl2an Lim x B On z B y x z B + 𝑜 y
71 70 expr Lim x B On z B y x z B + 𝑜 y
72 71 adantrl Lim x x On B On z B y x z B + 𝑜 y
73 72 adantrr Lim x x On B On z B + 𝑜 x z On z B y x z B + 𝑜 y
74 oawordex B On z On B z y On B + 𝑜 y = z
75 74 ad2ant2l x On B On z B + 𝑜 x z On B z y On B + 𝑜 y = z
76 oaord y On x On B On y x B + 𝑜 y B + 𝑜 x
77 76 3expb y On x On B On y x B + 𝑜 y B + 𝑜 x
78 eleq1 B + 𝑜 y = z B + 𝑜 y B + 𝑜 x z B + 𝑜 x
79 77 78 sylan9bb y On x On B On B + 𝑜 y = z y x z B + 𝑜 x
80 79 an32s y On B + 𝑜 y = z x On B On y x z B + 𝑜 x
81 80 biimpar y On B + 𝑜 y = z x On B On z B + 𝑜 x y x
82 eqimss2 B + 𝑜 y = z z B + 𝑜 y
83 82 ad3antlr y On B + 𝑜 y = z x On B On z B + 𝑜 x z B + 𝑜 y
84 81 83 jca y On B + 𝑜 y = z x On B On z B + 𝑜 x y x z B + 𝑜 y
85 84 anasss y On B + 𝑜 y = z x On B On z B + 𝑜 x y x z B + 𝑜 y
86 85 expcom x On B On z B + 𝑜 x y On B + 𝑜 y = z y x z B + 𝑜 y
87 86 reximdv2 x On B On z B + 𝑜 x y On B + 𝑜 y = z y x z B + 𝑜 y
88 87 adantrr x On B On z B + 𝑜 x z On y On B + 𝑜 y = z y x z B + 𝑜 y
89 75 88 sylbid x On B On z B + 𝑜 x z On B z y x z B + 𝑜 y
90 89 adantl Lim x x On B On z B + 𝑜 x z On B z y x z B + 𝑜 y
91 eloni z On Ord z
92 eloni B On Ord B
93 ordtri2or Ord z Ord B z B B z
94 91 92 93 syl2anr B On z On z B B z
95 94 ad2ant2l x On B On z B + 𝑜 x z On z B B z
96 95 adantl Lim x x On B On z B + 𝑜 x z On z B B z
97 73 90 96 mpjaod Lim x x On B On z B + 𝑜 x z On y x z B + 𝑜 y
98 97 exp45 Lim x x On B On z B + 𝑜 x z On y x z B + 𝑜 y
99 98 imp Lim x x On B On z B + 𝑜 x z On y x z B + 𝑜 y
100 99 adantld Lim x x On B On A On z B + 𝑜 x z On y x z B + 𝑜 y
101 100 imp32 Lim x x On B On A On z B + 𝑜 x z On y x z B + 𝑜 y
102 simplrr Lim x x On B On A On z B + 𝑜 x z On y x z On
103 onelon x On y x y On
104 103 30 sylan2 B On x On y x B + 𝑜 y On
105 104 exp32 B On x On y x B + 𝑜 y On
106 105 com12 x On B On y x B + 𝑜 y On
107 106 imp31 x On B On y x B + 𝑜 y On
108 107 ad4ant24 Lim x x On B On A On z B + 𝑜 x z On y x B + 𝑜 y On
109 simpll A On z B + 𝑜 x z On A On
110 109 ad2antlr Lim x x On B On A On z B + 𝑜 x z On y x A On
111 oaword z On B + 𝑜 y On A On z B + 𝑜 y A + 𝑜 z A + 𝑜 B + 𝑜 y
112 102 108 110 111 syl3anc Lim x x On B On A On z B + 𝑜 x z On y x z B + 𝑜 y A + 𝑜 z A + 𝑜 B + 𝑜 y
113 112 rexbidva Lim x x On B On A On z B + 𝑜 x z On y x z B + 𝑜 y y x A + 𝑜 z A + 𝑜 B + 𝑜 y
114 101 113 mpbid Lim x x On B On A On z B + 𝑜 x z On y x A + 𝑜 z A + 𝑜 B + 𝑜 y
115 114 exp32 Lim x x On B On A On z B + 𝑜 x z On y x A + 𝑜 z A + 𝑜 B + 𝑜 y
116 61 115 mpdd Lim x x On B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
117 116 exp32 Lim x x On B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
118 54 117 mpd Lim x B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
119 118 exp4a Lim x B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
120 119 imp31 Lim x B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
121 120 ralrimiv Lim x B On A On z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y
122 iunss2 z B + 𝑜 x y x A + 𝑜 z A + 𝑜 B + 𝑜 y z B + 𝑜 x A + 𝑜 z y x A + 𝑜 B + 𝑜 y
123 121 122 syl Lim x B On A On z B + 𝑜 x A + 𝑜 z y x A + 𝑜 B + 𝑜 y
124 123 ancoms A On Lim x B On z B + 𝑜 x A + 𝑜 z y x A + 𝑜 B + 𝑜 y
125 oaordi x On B On y x B + 𝑜 y B + 𝑜 x
126 125 anim1d x On B On y x w A + 𝑜 B + 𝑜 y B + 𝑜 y B + 𝑜 x w A + 𝑜 B + 𝑜 y
127 oveq2 z = B + 𝑜 y A + 𝑜 z = A + 𝑜 B + 𝑜 y
128 127 eleq2d z = B + 𝑜 y w A + 𝑜 z w A + 𝑜 B + 𝑜 y
129 128 rspcev B + 𝑜 y B + 𝑜 x w A + 𝑜 B + 𝑜 y z B + 𝑜 x w A + 𝑜 z
130 126 129 syl6 x On B On y x w A + 𝑜 B + 𝑜 y z B + 𝑜 x w A + 𝑜 z
131 130 expd x On B On y x w A + 𝑜 B + 𝑜 y z B + 𝑜 x w A + 𝑜 z
132 131 rexlimdv x On B On y x w A + 𝑜 B + 𝑜 y z B + 𝑜 x w A + 𝑜 z
133 eliun w y x A + 𝑜 B + 𝑜 y y x w A + 𝑜 B + 𝑜 y
134 eliun w z B + 𝑜 x A + 𝑜 z z B + 𝑜 x w A + 𝑜 z
135 132 133 134 3imtr4g x On B On w y x A + 𝑜 B + 𝑜 y w z B + 𝑜 x A + 𝑜 z
136 135 ssrdv x On B On y x A + 𝑜 B + 𝑜 y z B + 𝑜 x A + 𝑜 z
137 54 136 sylan Lim x B On y x A + 𝑜 B + 𝑜 y z B + 𝑜 x A + 𝑜 z
138 137 adantl A On Lim x B On y x A + 𝑜 B + 𝑜 y z B + 𝑜 x A + 𝑜 z
139 124 138 eqssd A On Lim x B On z B + 𝑜 x A + 𝑜 z = y x A + 𝑜 B + 𝑜 y
140 52 139 eqtrd A On Lim x B On A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
141 140 an12s Lim x A On B On A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
142 141 adantr Lim x A On B On y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 x = y x A + 𝑜 B + 𝑜 y
143 39 45 142 3eqtr4d Lim x A On B On y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x
144 143 exp31 Lim x A On B On y x A + 𝑜 B + 𝑜 y = A + 𝑜 B + 𝑜 y A + 𝑜 B + 𝑜 x = A + 𝑜 B + 𝑜 x
145 4 8 12 16 23 37 144 tfinds3 C On A On B On A + 𝑜 B + 𝑜 C = A + 𝑜 B + 𝑜 C
146 145 com12 A On B On C On A + 𝑜 B + 𝑜 C = A + 𝑜 B + 𝑜 C
147 146 3impia A On B On C On A + 𝑜 B + 𝑜 C = A + 𝑜 B + 𝑜 C