Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
2
|
oveq2d |
|
4 |
1 3
|
eqeq12d |
|
5 |
|
oveq2 |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq2d |
|
8 |
5 7
|
eqeq12d |
|
9 |
|
oveq2 |
|
10 |
|
oveq2 |
|
11 |
10
|
oveq2d |
|
12 |
9 11
|
eqeq12d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
14
|
oveq2d |
|
16 |
13 15
|
eqeq12d |
|
17 |
|
oacl |
|
18 |
|
oa0 |
|
19 |
17 18
|
syl |
|
20 |
|
oa0 |
|
21 |
20
|
oveq2d |
|
22 |
21
|
adantl |
|
23 |
19 22
|
eqtr4d |
|
24 |
|
suceq |
|
25 |
|
oasuc |
|
26 |
17 25
|
sylan |
|
27 |
|
oasuc |
|
28 |
27
|
oveq2d |
|
29 |
28
|
adantl |
|
30 |
|
oacl |
|
31 |
|
oasuc |
|
32 |
30 31
|
sylan2 |
|
33 |
29 32
|
eqtrd |
|
34 |
33
|
anassrs |
|
35 |
26 34
|
eqeq12d |
|
36 |
24 35
|
syl5ibr |
|
37 |
36
|
expcom |
|
38 |
|
iuneq2 |
|
39 |
38
|
adantl |
|
40 |
|
vex |
|
41 |
|
oalim |
|
42 |
40 41
|
mpanr1 |
|
43 |
17 42
|
sylan |
|
44 |
43
|
ancoms |
|
45 |
44
|
adantr |
|
46 |
|
oalimcl |
|
47 |
40 46
|
mpanr1 |
|
48 |
47
|
ancoms |
|
49 |
|
ovex |
|
50 |
|
oalim |
|
51 |
49 50
|
mpanr1 |
|
52 |
48 51
|
sylan2 |
|
53 |
|
limelon |
|
54 |
40 53
|
mpan |
|
55 |
|
oacl |
|
56 |
55
|
ancoms |
|
57 |
|
onelon |
|
58 |
57
|
ex |
|
59 |
56 58
|
syl |
|
60 |
59
|
adantld |
|
61 |
60
|
adantl |
|
62 |
|
0ellim |
|
63 |
|
onelss |
|
64 |
20
|
sseq2d |
|
65 |
63 64
|
sylibrd |
|
66 |
65
|
imp |
|
67 |
|
oveq2 |
|
68 |
67
|
sseq2d |
|
69 |
68
|
rspcev |
|
70 |
62 66 69
|
syl2an |
|
71 |
70
|
expr |
|
72 |
71
|
adantrl |
|
73 |
72
|
adantrr |
|
74 |
|
oawordex |
|
75 |
74
|
ad2ant2l |
|
76 |
|
oaord |
|
77 |
76
|
3expb |
|
78 |
|
eleq1 |
|
79 |
77 78
|
sylan9bb |
|
80 |
79
|
an32s |
|
81 |
80
|
biimpar |
|
82 |
|
eqimss2 |
|
83 |
82
|
ad3antlr |
|
84 |
81 83
|
jca |
|
85 |
84
|
anasss |
|
86 |
85
|
expcom |
|
87 |
86
|
reximdv2 |
|
88 |
87
|
adantrr |
|
89 |
75 88
|
sylbid |
|
90 |
89
|
adantl |
|
91 |
|
eloni |
|
92 |
|
eloni |
|
93 |
|
ordtri2or |
|
94 |
91 92 93
|
syl2anr |
|
95 |
94
|
ad2ant2l |
|
96 |
95
|
adantl |
|
97 |
73 90 96
|
mpjaod |
|
98 |
97
|
exp45 |
|
99 |
98
|
imp |
|
100 |
99
|
adantld |
|
101 |
100
|
imp32 |
|
102 |
|
simplrr |
|
103 |
|
onelon |
|
104 |
103 30
|
sylan2 |
|
105 |
104
|
exp32 |
|
106 |
105
|
com12 |
|
107 |
106
|
imp31 |
|
108 |
107
|
ad4ant24 |
|
109 |
|
simpll |
|
110 |
109
|
ad2antlr |
|
111 |
|
oaword |
|
112 |
102 108 110 111
|
syl3anc |
|
113 |
112
|
rexbidva |
|
114 |
101 113
|
mpbid |
|
115 |
114
|
exp32 |
|
116 |
61 115
|
mpdd |
|
117 |
116
|
exp32 |
|
118 |
54 117
|
mpd |
|
119 |
118
|
exp4a |
|
120 |
119
|
imp31 |
|
121 |
120
|
ralrimiv |
|
122 |
|
iunss2 |
|
123 |
121 122
|
syl |
|
124 |
123
|
ancoms |
|
125 |
|
oaordi |
|
126 |
125
|
anim1d |
|
127 |
|
oveq2 |
|
128 |
127
|
eleq2d |
|
129 |
128
|
rspcev |
|
130 |
126 129
|
syl6 |
|
131 |
130
|
expd |
|
132 |
131
|
rexlimdv |
|
133 |
|
eliun |
|
134 |
|
eliun |
|
135 |
132 133 134
|
3imtr4g |
|
136 |
135
|
ssrdv |
|
137 |
54 136
|
sylan |
|
138 |
137
|
adantl |
|
139 |
124 138
|
eqssd |
|
140 |
52 139
|
eqtrd |
|
141 |
140
|
an12s |
|
142 |
141
|
adantr |
|
143 |
39 45 142
|
3eqtr4d |
|
144 |
143
|
exp31 |
|
145 |
4 8 12 16 23 37 144
|
tfinds3 |
|
146 |
145
|
com12 |
|
147 |
146
|
3impia |
|