Metamath Proof Explorer


Theorem oacan

Description: Left cancellation law for ordinal addition. Corollary 8.5 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)

Ref Expression
Assertion oacan AOnBOnCOnA+𝑜B=A+𝑜CB=C

Proof

Step Hyp Ref Expression
1 oaord BOnCOnAOnBCA+𝑜BA+𝑜C
2 1 3comr AOnBOnCOnBCA+𝑜BA+𝑜C
3 oaord COnBOnAOnCBA+𝑜CA+𝑜B
4 3 3com13 AOnBOnCOnCBA+𝑜CA+𝑜B
5 2 4 orbi12d AOnBOnCOnBCCBA+𝑜BA+𝑜CA+𝑜CA+𝑜B
6 5 notbid AOnBOnCOn¬BCCB¬A+𝑜BA+𝑜CA+𝑜CA+𝑜B
7 eloni BOnOrdB
8 eloni COnOrdC
9 ordtri3 OrdBOrdCB=C¬BCCB
10 7 8 9 syl2an BOnCOnB=C¬BCCB
11 10 3adant1 AOnBOnCOnB=C¬BCCB
12 oacl AOnBOnA+𝑜BOn
13 eloni A+𝑜BOnOrdA+𝑜B
14 12 13 syl AOnBOnOrdA+𝑜B
15 oacl AOnCOnA+𝑜COn
16 eloni A+𝑜COnOrdA+𝑜C
17 15 16 syl AOnCOnOrdA+𝑜C
18 ordtri3 OrdA+𝑜BOrdA+𝑜CA+𝑜B=A+𝑜C¬A+𝑜BA+𝑜CA+𝑜CA+𝑜B
19 14 17 18 syl2an AOnBOnAOnCOnA+𝑜B=A+𝑜C¬A+𝑜BA+𝑜CA+𝑜CA+𝑜B
20 19 3impdi AOnBOnCOnA+𝑜B=A+𝑜C¬A+𝑜BA+𝑜CA+𝑜CA+𝑜B
21 6 11 20 3bitr4rd AOnBOnCOnA+𝑜B=A+𝑜CB=C