Metamath Proof Explorer


Theorem oacl

Description: Closure law for ordinal addition. Proposition 8.2 of TakeutiZaring p. 57. (Contributed by NM, 5-May-1995)

Ref Expression
Assertion oacl A On B On A + 𝑜 B On

Proof

Step Hyp Ref Expression
1 oveq2 x = A + 𝑜 x = A + 𝑜
2 1 eleq1d x = A + 𝑜 x On A + 𝑜 On
3 oveq2 x = y A + 𝑜 x = A + 𝑜 y
4 3 eleq1d x = y A + 𝑜 x On A + 𝑜 y On
5 oveq2 x = suc y A + 𝑜 x = A + 𝑜 suc y
6 5 eleq1d x = suc y A + 𝑜 x On A + 𝑜 suc y On
7 oveq2 x = B A + 𝑜 x = A + 𝑜 B
8 7 eleq1d x = B A + 𝑜 x On A + 𝑜 B On
9 oa0 A On A + 𝑜 = A
10 9 eleq1d A On A + 𝑜 On A On
11 10 ibir A On A + 𝑜 On
12 suceloni A + 𝑜 y On suc A + 𝑜 y On
13 oasuc A On y On A + 𝑜 suc y = suc A + 𝑜 y
14 13 eleq1d A On y On A + 𝑜 suc y On suc A + 𝑜 y On
15 12 14 syl5ibr A On y On A + 𝑜 y On A + 𝑜 suc y On
16 15 expcom y On A On A + 𝑜 y On A + 𝑜 suc y On
17 vex x V
18 iunon x V y x A + 𝑜 y On y x A + 𝑜 y On
19 17 18 mpan y x A + 𝑜 y On y x A + 𝑜 y On
20 oalim A On x V Lim x A + 𝑜 x = y x A + 𝑜 y
21 17 20 mpanr1 A On Lim x A + 𝑜 x = y x A + 𝑜 y
22 21 eleq1d A On Lim x A + 𝑜 x On y x A + 𝑜 y On
23 19 22 syl5ibr A On Lim x y x A + 𝑜 y On A + 𝑜 x On
24 23 expcom Lim x A On y x A + 𝑜 y On A + 𝑜 x On
25 2 4 6 8 11 16 24 tfinds3 B On A On A + 𝑜 B On
26 25 impcom A On B On A + 𝑜 B On