Metamath Proof Explorer


Theorem oaf1o

Description: Left addition by a constant is a bijection from ordinals to ordinals greater than the constant. (Contributed by Mario Carneiro, 30-May-2015)

Ref Expression
Assertion oaf1o A On x On A + 𝑜 x : On 1-1 onto On A

Proof

Step Hyp Ref Expression
1 oacl A On x On A + 𝑜 x On
2 oaword1 A On x On A A + 𝑜 x
3 ontri1 A On A + 𝑜 x On A A + 𝑜 x ¬ A + 𝑜 x A
4 1 3 syldan A On x On A A + 𝑜 x ¬ A + 𝑜 x A
5 2 4 mpbid A On x On ¬ A + 𝑜 x A
6 1 5 eldifd A On x On A + 𝑜 x On A
7 6 ralrimiva A On x On A + 𝑜 x On A
8 simpl A On y On A A On
9 eldifi y On A y On
10 9 adantl A On y On A y On
11 eldifn y On A ¬ y A
12 11 adantl A On y On A ¬ y A
13 ontri1 A On y On A y ¬ y A
14 10 13 syldan A On y On A A y ¬ y A
15 12 14 mpbird A On y On A A y
16 oawordeu A On y On A y ∃! x On A + 𝑜 x = y
17 8 10 15 16 syl21anc A On y On A ∃! x On A + 𝑜 x = y
18 eqcom A + 𝑜 x = y y = A + 𝑜 x
19 18 reubii ∃! x On A + 𝑜 x = y ∃! x On y = A + 𝑜 x
20 17 19 sylib A On y On A ∃! x On y = A + 𝑜 x
21 20 ralrimiva A On y On A ∃! x On y = A + 𝑜 x
22 eqid x On A + 𝑜 x = x On A + 𝑜 x
23 22 f1ompt x On A + 𝑜 x : On 1-1 onto On A x On A + 𝑜 x On A y On A ∃! x On y = A + 𝑜 x
24 7 21 23 sylanbrc A On x On A + 𝑜 x : On 1-1 onto On A