Metamath Proof Explorer


Theorem oalim

Description: Ordinal addition with a limit ordinal. Definition 8.1 of TakeutiZaring p. 56. (Contributed by NM, 3-Aug-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oalim A On B C Lim B A + 𝑜 B = x B A + 𝑜 x

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 simpr B C Lim B Lim B
3 1 2 jca B C Lim B B On Lim B
4 rdglim2a B On Lim B rec y V suc y A B = x B rec y V suc y A x
5 4 adantl A On B On Lim B rec y V suc y A B = x B rec y V suc y A x
6 oav A On B On A + 𝑜 B = rec y V suc y A B
7 onelon B On x B x On
8 oav A On x On A + 𝑜 x = rec y V suc y A x
9 7 8 sylan2 A On B On x B A + 𝑜 x = rec y V suc y A x
10 9 anassrs A On B On x B A + 𝑜 x = rec y V suc y A x
11 10 iuneq2dv A On B On x B A + 𝑜 x = x B rec y V suc y A x
12 6 11 eqeq12d A On B On A + 𝑜 B = x B A + 𝑜 x rec y V suc y A B = x B rec y V suc y A x
13 12 adantrr A On B On Lim B A + 𝑜 B = x B A + 𝑜 x rec y V suc y A B = x B rec y V suc y A x
14 5 13 mpbird A On B On Lim B A + 𝑜 B = x B A + 𝑜 x
15 3 14 sylan2 A On B C Lim B A + 𝑜 B = x B A + 𝑜 x