Metamath Proof Explorer


Theorem oalimcl

Description: The ordinal sum with a limit ordinal is a limit ordinal. Proposition 8.11 of TakeutiZaring p. 60. (Contributed by NM, 8-Dec-2004)

Ref Expression
Assertion oalimcl A On B C Lim B Lim A + 𝑜 B

Proof

Step Hyp Ref Expression
1 limelon B C Lim B B On
2 oacl A On B On A + 𝑜 B On
3 eloni A + 𝑜 B On Ord A + 𝑜 B
4 2 3 syl A On B On Ord A + 𝑜 B
5 1 4 sylan2 A On B C Lim B Ord A + 𝑜 B
6 0ellim Lim B B
7 n0i B ¬ B =
8 6 7 syl Lim B ¬ B =
9 8 ad2antll A On B C Lim B ¬ B =
10 oa00 A On B On A + 𝑜 B = A = B =
11 simpr A = B = B =
12 10 11 syl6bi A On B On A + 𝑜 B = B =
13 12 con3d A On B On ¬ B = ¬ A + 𝑜 B =
14 1 13 sylan2 A On B C Lim B ¬ B = ¬ A + 𝑜 B =
15 9 14 mpd A On B C Lim B ¬ A + 𝑜 B =
16 vex y V
17 16 sucid y suc y
18 oalim A On B C Lim B A + 𝑜 B = x B A + 𝑜 x
19 eqeq1 A + 𝑜 B = suc y A + 𝑜 B = x B A + 𝑜 x suc y = x B A + 𝑜 x
20 18 19 syl5ib A + 𝑜 B = suc y A On B C Lim B suc y = x B A + 𝑜 x
21 20 imp A + 𝑜 B = suc y A On B C Lim B suc y = x B A + 𝑜 x
22 17 21 eleqtrid A + 𝑜 B = suc y A On B C Lim B y x B A + 𝑜 x
23 eliun y x B A + 𝑜 x x B y A + 𝑜 x
24 22 23 sylib A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x
25 onelon B On x B x On
26 1 25 sylan B C Lim B x B x On
27 onnbtwn x On ¬ x B B suc x
28 imnan x B ¬ B suc x ¬ x B B suc x
29 27 28 sylibr x On x B ¬ B suc x
30 29 com12 x B x On ¬ B suc x
31 30 adantl B C Lim B x B x On ¬ B suc x
32 26 31 mpd B C Lim B x B ¬ B suc x
33 32 ad2antrl A On B C Lim B x B y A + 𝑜 x ¬ B suc x
34 oacl A On x On A + 𝑜 x On
35 eloni A + 𝑜 x On Ord A + 𝑜 x
36 ordsucelsuc Ord A + 𝑜 x y A + 𝑜 x suc y suc A + 𝑜 x
37 34 35 36 3syl A On x On y A + 𝑜 x suc y suc A + 𝑜 x
38 oasuc A On x On A + 𝑜 suc x = suc A + 𝑜 x
39 38 eleq2d A On x On suc y A + 𝑜 suc x suc y suc A + 𝑜 x
40 37 39 bitr4d A On x On y A + 𝑜 x suc y A + 𝑜 suc x
41 26 40 sylan2 A On B C Lim B x B y A + 𝑜 x suc y A + 𝑜 suc x
42 eleq1 A + 𝑜 B = suc y A + 𝑜 B A + 𝑜 suc x suc y A + 𝑜 suc x
43 42 bicomd A + 𝑜 B = suc y suc y A + 𝑜 suc x A + 𝑜 B A + 𝑜 suc x
44 41 43 sylan9bbr A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x A + 𝑜 B A + 𝑜 suc x
45 1 adantr B C Lim B x B B On
46 sucelon x On suc x On
47 26 46 sylib B C Lim B x B suc x On
48 45 47 jca B C Lim B x B B On suc x On
49 oaord B On suc x On A On B suc x A + 𝑜 B A + 𝑜 suc x
50 49 3expa B On suc x On A On B suc x A + 𝑜 B A + 𝑜 suc x
51 48 50 sylan B C Lim B x B A On B suc x A + 𝑜 B A + 𝑜 suc x
52 51 ancoms A On B C Lim B x B B suc x A + 𝑜 B A + 𝑜 suc x
53 52 adantl A + 𝑜 B = suc y A On B C Lim B x B B suc x A + 𝑜 B A + 𝑜 suc x
54 44 53 bitr4d A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x B suc x
55 54 biimpd A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x B suc x
56 55 exp32 A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x B suc x
57 56 com4l A On B C Lim B x B y A + 𝑜 x A + 𝑜 B = suc y B suc x
58 57 imp32 A On B C Lim B x B y A + 𝑜 x A + 𝑜 B = suc y B suc x
59 33 58 mtod A On B C Lim B x B y A + 𝑜 x ¬ A + 𝑜 B = suc y
60 59 exp44 A On B C Lim B x B y A + 𝑜 x ¬ A + 𝑜 B = suc y
61 60 imp A On B C Lim B x B y A + 𝑜 x ¬ A + 𝑜 B = suc y
62 61 rexlimdv A On B C Lim B x B y A + 𝑜 x ¬ A + 𝑜 B = suc y
63 62 adantl A + 𝑜 B = suc y A On B C Lim B x B y A + 𝑜 x ¬ A + 𝑜 B = suc y
64 24 63 mpd A + 𝑜 B = suc y A On B C Lim B ¬ A + 𝑜 B = suc y
65 64 expcom A On B C Lim B A + 𝑜 B = suc y ¬ A + 𝑜 B = suc y
66 65 pm2.01d A On B C Lim B ¬ A + 𝑜 B = suc y
67 66 adantr A On B C Lim B y On ¬ A + 𝑜 B = suc y
68 67 nrexdv A On B C Lim B ¬ y On A + 𝑜 B = suc y
69 ioran ¬ A + 𝑜 B = y On A + 𝑜 B = suc y ¬ A + 𝑜 B = ¬ y On A + 𝑜 B = suc y
70 15 68 69 sylanbrc A On B C Lim B ¬ A + 𝑜 B = y On A + 𝑜 B = suc y
71 dflim3 Lim A + 𝑜 B Ord A + 𝑜 B ¬ A + 𝑜 B = y On A + 𝑜 B = suc y
72 5 70 71 sylanbrc A On B C Lim B Lim A + 𝑜 B