Metamath Proof Explorer


Theorem oaordi

Description: Ordering property of ordinal addition. Proposition 8.4 of TakeutiZaring p. 58. (Contributed by NM, 5-Dec-2004)

Ref Expression
Assertion oaordi B On C On A B C + 𝑜 A C + 𝑜 B

Proof

Step Hyp Ref Expression
1 onelon B On A B A On
2 1 adantll C On B On A B A On
3 eloni B On Ord B
4 ordsucss Ord B A B suc A B
5 3 4 syl B On A B suc A B
6 5 ad2antlr C On B On A On A B suc A B
7 sucelon A On suc A On
8 oveq2 x = suc A C + 𝑜 x = C + 𝑜 suc A
9 8 sseq2d x = suc A C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 suc A
10 9 imbi2d x = suc A C On C + 𝑜 suc A C + 𝑜 x C On C + 𝑜 suc A C + 𝑜 suc A
11 oveq2 x = y C + 𝑜 x = C + 𝑜 y
12 11 sseq2d x = y C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 y
13 12 imbi2d x = y C On C + 𝑜 suc A C + 𝑜 x C On C + 𝑜 suc A C + 𝑜 y
14 oveq2 x = suc y C + 𝑜 x = C + 𝑜 suc y
15 14 sseq2d x = suc y C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 suc y
16 15 imbi2d x = suc y C On C + 𝑜 suc A C + 𝑜 x C On C + 𝑜 suc A C + 𝑜 suc y
17 oveq2 x = B C + 𝑜 x = C + 𝑜 B
18 17 sseq2d x = B C + 𝑜 suc A C + 𝑜 x C + 𝑜 suc A C + 𝑜 B
19 18 imbi2d x = B C On C + 𝑜 suc A C + 𝑜 x C On C + 𝑜 suc A C + 𝑜 B
20 ssid C + 𝑜 suc A C + 𝑜 suc A
21 20 2a1i suc A On C On C + 𝑜 suc A C + 𝑜 suc A
22 sssucid C + 𝑜 y suc C + 𝑜 y
23 sstr2 C + 𝑜 suc A C + 𝑜 y C + 𝑜 y suc C + 𝑜 y C + 𝑜 suc A suc C + 𝑜 y
24 22 23 mpi C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A suc C + 𝑜 y
25 oasuc C On y On C + 𝑜 suc y = suc C + 𝑜 y
26 25 ancoms y On C On C + 𝑜 suc y = suc C + 𝑜 y
27 26 sseq2d y On C On C + 𝑜 suc A C + 𝑜 suc y C + 𝑜 suc A suc C + 𝑜 y
28 24 27 syl5ibr y On C On C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
29 28 ex y On C On C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
30 29 ad2antrr y On suc A On suc A y C On C + 𝑜 suc A C + 𝑜 y C + 𝑜 suc A C + 𝑜 suc y
31 30 a2d y On suc A On suc A y C On C + 𝑜 suc A C + 𝑜 y C On C + 𝑜 suc A C + 𝑜 suc y
32 sucssel A On suc A x A x
33 7 32 sylbir suc A On suc A x A x
34 limsuc Lim x A x suc A x
35 34 biimpd Lim x A x suc A x
36 33 35 sylan9r Lim x suc A On suc A x suc A x
37 36 imp Lim x suc A On suc A x suc A x
38 oveq2 y = suc A C + 𝑜 y = C + 𝑜 suc A
39 38 ssiun2s suc A x C + 𝑜 suc A y x C + 𝑜 y
40 37 39 syl Lim x suc A On suc A x C + 𝑜 suc A y x C + 𝑜 y
41 40 adantr Lim x suc A On suc A x C On C + 𝑜 suc A y x C + 𝑜 y
42 vex x V
43 oalim C On x V Lim x C + 𝑜 x = y x C + 𝑜 y
44 42 43 mpanr1 C On Lim x C + 𝑜 x = y x C + 𝑜 y
45 44 ancoms Lim x C On C + 𝑜 x = y x C + 𝑜 y
46 45 adantlr Lim x suc A On C On C + 𝑜 x = y x C + 𝑜 y
47 46 adantlr Lim x suc A On suc A x C On C + 𝑜 x = y x C + 𝑜 y
48 41 47 sseqtrrd Lim x suc A On suc A x C On C + 𝑜 suc A C + 𝑜 x
49 48 ex Lim x suc A On suc A x C On C + 𝑜 suc A C + 𝑜 x
50 49 a1d Lim x suc A On suc A x y x suc A y C On C + 𝑜 suc A C + 𝑜 y C On C + 𝑜 suc A C + 𝑜 x
51 10 13 16 19 21 31 50 tfindsg B On suc A On suc A B C On C + 𝑜 suc A C + 𝑜 B
52 51 exp31 B On suc A On suc A B C On C + 𝑜 suc A C + 𝑜 B
53 7 52 syl5bi B On A On suc A B C On C + 𝑜 suc A C + 𝑜 B
54 53 com4r C On B On A On suc A B C + 𝑜 suc A C + 𝑜 B
55 54 imp31 C On B On A On suc A B C + 𝑜 suc A C + 𝑜 B
56 oasuc C On A On C + 𝑜 suc A = suc C + 𝑜 A
57 56 sseq1d C On A On C + 𝑜 suc A C + 𝑜 B suc C + 𝑜 A C + 𝑜 B
58 ovex C + 𝑜 A V
59 sucssel C + 𝑜 A V suc C + 𝑜 A C + 𝑜 B C + 𝑜 A C + 𝑜 B
60 58 59 ax-mp suc C + 𝑜 A C + 𝑜 B C + 𝑜 A C + 𝑜 B
61 57 60 syl6bi C On A On C + 𝑜 suc A C + 𝑜 B C + 𝑜 A C + 𝑜 B
62 61 adantlr C On B On A On C + 𝑜 suc A C + 𝑜 B C + 𝑜 A C + 𝑜 B
63 6 55 62 3syld C On B On A On A B C + 𝑜 A C + 𝑜 B
64 63 imp C On B On A On A B C + 𝑜 A C + 𝑜 B
65 64 an32s C On B On A B A On C + 𝑜 A C + 𝑜 B
66 2 65 mpdan C On B On A B C + 𝑜 A C + 𝑜 B
67 66 ex C On B On A B C + 𝑜 A C + 𝑜 B
68 67 ancoms B On C On A B C + 𝑜 A C + 𝑜 B