Metamath Proof Explorer


Theorem oasuc

Description: Addition with successor. Definition 8.1 of TakeutiZaring p. 56. (Contributed by NM, 3-May-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oasuc A On B On A + 𝑜 suc B = suc A + 𝑜 B

Proof

Step Hyp Ref Expression
1 rdgsuc B On rec x V suc x A suc B = x V suc x rec x V suc x A B
2 1 adantl A On B On rec x V suc x A suc B = x V suc x rec x V suc x A B
3 suceloni B On suc B On
4 oav A On suc B On A + 𝑜 suc B = rec x V suc x A suc B
5 3 4 sylan2 A On B On A + 𝑜 suc B = rec x V suc x A suc B
6 ovex A + 𝑜 B V
7 suceq x = A + 𝑜 B suc x = suc A + 𝑜 B
8 eqid x V suc x = x V suc x
9 6 sucex suc A + 𝑜 B V
10 7 8 9 fvmpt A + 𝑜 B V x V suc x A + 𝑜 B = suc A + 𝑜 B
11 6 10 ax-mp x V suc x A + 𝑜 B = suc A + 𝑜 B
12 oav A On B On A + 𝑜 B = rec x V suc x A B
13 12 fveq2d A On B On x V suc x A + 𝑜 B = x V suc x rec x V suc x A B
14 11 13 eqtr3id A On B On suc A + 𝑜 B = x V suc x rec x V suc x A B
15 2 5 14 3eqtr4d A On B On A + 𝑜 suc B = suc A + 𝑜 B