Metamath Proof Explorer


Theorem oawordeu

Description: Existence theorem for weak ordering of ordinal sum. Proposition 8.8 of TakeutiZaring p. 59. (Contributed by NM, 11-Dec-2004)

Ref Expression
Assertion oawordeu A On B On A B ∃! x On A + 𝑜 x = B

Proof

Step Hyp Ref Expression
1 sseq1 A = if A On A A B if A On A B
2 oveq1 A = if A On A A + 𝑜 x = if A On A + 𝑜 x
3 2 eqeq1d A = if A On A A + 𝑜 x = B if A On A + 𝑜 x = B
4 3 reubidv A = if A On A ∃! x On A + 𝑜 x = B ∃! x On if A On A + 𝑜 x = B
5 1 4 imbi12d A = if A On A A B ∃! x On A + 𝑜 x = B if A On A B ∃! x On if A On A + 𝑜 x = B
6 sseq2 B = if B On B if A On A B if A On A if B On B
7 eqeq2 B = if B On B if A On A + 𝑜 x = B if A On A + 𝑜 x = if B On B
8 7 reubidv B = if B On B ∃! x On if A On A + 𝑜 x = B ∃! x On if A On A + 𝑜 x = if B On B
9 6 8 imbi12d B = if B On B if A On A B ∃! x On if A On A + 𝑜 x = B if A On A if B On B ∃! x On if A On A + 𝑜 x = if B On B
10 0elon On
11 10 elimel if A On A On
12 10 elimel if B On B On
13 eqid y On | if B On B if A On A + 𝑜 y = y On | if B On B if A On A + 𝑜 y
14 11 12 13 oawordeulem if A On A if B On B ∃! x On if A On A + 𝑜 x = if B On B
15 5 9 14 dedth2h A On B On A B ∃! x On A + 𝑜 x = B
16 15 imp A On B On A B ∃! x On A + 𝑜 x = B