| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
sseq12d |
|
| 4 |
|
oveq2 |
|
| 5 |
|
oveq2 |
|
| 6 |
4 5
|
sseq12d |
|
| 7 |
|
oveq2 |
|
| 8 |
|
oveq2 |
|
| 9 |
7 8
|
sseq12d |
|
| 10 |
|
oveq2 |
|
| 11 |
|
oveq2 |
|
| 12 |
10 11
|
sseq12d |
|
| 13 |
|
oa0 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
oa0 |
|
| 16 |
15
|
adantl |
|
| 17 |
14 16
|
sseq12d |
|
| 18 |
17
|
biimpar |
|
| 19 |
|
oacl |
|
| 20 |
|
eloni |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
oacl |
|
| 23 |
|
eloni |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
ordsucsssuc |
|
| 26 |
21 24 25
|
syl2an |
|
| 27 |
26
|
anandirs |
|
| 28 |
|
oasuc |
|
| 29 |
28
|
adantlr |
|
| 30 |
|
oasuc |
|
| 31 |
30
|
adantll |
|
| 32 |
29 31
|
sseq12d |
|
| 33 |
27 32
|
bitr4d |
|
| 34 |
33
|
biimpd |
|
| 35 |
34
|
expcom |
|
| 36 |
35
|
adantrd |
|
| 37 |
|
vex |
|
| 38 |
|
ss2iun |
|
| 39 |
|
oalim |
|
| 40 |
39
|
adantlr |
|
| 41 |
|
oalim |
|
| 42 |
41
|
adantll |
|
| 43 |
40 42
|
sseq12d |
|
| 44 |
38 43
|
imbitrrid |
|
| 45 |
37 44
|
mpanr1 |
|
| 46 |
45
|
expcom |
|
| 47 |
46
|
adantrd |
|
| 48 |
3 6 9 12 18 36 47
|
tfinds3 |
|
| 49 |
48
|
exp4c |
|
| 50 |
49
|
3imp231 |
|