Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
1 2
|
sseq12d |
|
4 |
|
oveq2 |
|
5 |
|
oveq2 |
|
6 |
4 5
|
sseq12d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
7 8
|
sseq12d |
|
10 |
|
oveq2 |
|
11 |
|
oveq2 |
|
12 |
10 11
|
sseq12d |
|
13 |
|
oa0 |
|
14 |
13
|
adantr |
|
15 |
|
oa0 |
|
16 |
15
|
adantl |
|
17 |
14 16
|
sseq12d |
|
18 |
17
|
biimpar |
|
19 |
|
oacl |
|
20 |
|
eloni |
|
21 |
19 20
|
syl |
|
22 |
|
oacl |
|
23 |
|
eloni |
|
24 |
22 23
|
syl |
|
25 |
|
ordsucsssuc |
|
26 |
21 24 25
|
syl2an |
|
27 |
26
|
anandirs |
|
28 |
|
oasuc |
|
29 |
28
|
adantlr |
|
30 |
|
oasuc |
|
31 |
30
|
adantll |
|
32 |
29 31
|
sseq12d |
|
33 |
27 32
|
bitr4d |
|
34 |
33
|
biimpd |
|
35 |
34
|
expcom |
|
36 |
35
|
adantrd |
|
37 |
|
vex |
|
38 |
|
ss2iun |
|
39 |
|
oalim |
|
40 |
39
|
adantlr |
|
41 |
|
oalim |
|
42 |
41
|
adantll |
|
43 |
40 42
|
sseq12d |
|
44 |
38 43
|
syl5ibr |
|
45 |
37 44
|
mpanr1 |
|
46 |
45
|
expcom |
|
47 |
46
|
adantrd |
|
48 |
3 6 9 12 18 36 47
|
tfinds3 |
|
49 |
48
|
exp4c |
|
50 |
49
|
3imp231 |
|