Metamath Proof Explorer


Theorem oawordri

Description: Weak ordering property of ordinal addition. Proposition 8.7 of TakeutiZaring p. 59. (Contributed by NM, 7-Dec-2004)

Ref Expression
Assertion oawordri A On B On C On A B A + 𝑜 C B + 𝑜 C

Proof

Step Hyp Ref Expression
1 oveq2 x = A + 𝑜 x = A + 𝑜
2 oveq2 x = B + 𝑜 x = B + 𝑜
3 1 2 sseq12d x = A + 𝑜 x B + 𝑜 x A + 𝑜 B + 𝑜
4 oveq2 x = y A + 𝑜 x = A + 𝑜 y
5 oveq2 x = y B + 𝑜 x = B + 𝑜 y
6 4 5 sseq12d x = y A + 𝑜 x B + 𝑜 x A + 𝑜 y B + 𝑜 y
7 oveq2 x = suc y A + 𝑜 x = A + 𝑜 suc y
8 oveq2 x = suc y B + 𝑜 x = B + 𝑜 suc y
9 7 8 sseq12d x = suc y A + 𝑜 x B + 𝑜 x A + 𝑜 suc y B + 𝑜 suc y
10 oveq2 x = C A + 𝑜 x = A + 𝑜 C
11 oveq2 x = C B + 𝑜 x = B + 𝑜 C
12 10 11 sseq12d x = C A + 𝑜 x B + 𝑜 x A + 𝑜 C B + 𝑜 C
13 oa0 A On A + 𝑜 = A
14 13 adantr A On B On A + 𝑜 = A
15 oa0 B On B + 𝑜 = B
16 15 adantl A On B On B + 𝑜 = B
17 14 16 sseq12d A On B On A + 𝑜 B + 𝑜 A B
18 17 biimpar A On B On A B A + 𝑜 B + 𝑜
19 oacl A On y On A + 𝑜 y On
20 eloni A + 𝑜 y On Ord A + 𝑜 y
21 19 20 syl A On y On Ord A + 𝑜 y
22 oacl B On y On B + 𝑜 y On
23 eloni B + 𝑜 y On Ord B + 𝑜 y
24 22 23 syl B On y On Ord B + 𝑜 y
25 ordsucsssuc Ord A + 𝑜 y Ord B + 𝑜 y A + 𝑜 y B + 𝑜 y suc A + 𝑜 y suc B + 𝑜 y
26 21 24 25 syl2an A On y On B On y On A + 𝑜 y B + 𝑜 y suc A + 𝑜 y suc B + 𝑜 y
27 26 anandirs A On B On y On A + 𝑜 y B + 𝑜 y suc A + 𝑜 y suc B + 𝑜 y
28 oasuc A On y On A + 𝑜 suc y = suc A + 𝑜 y
29 28 adantlr A On B On y On A + 𝑜 suc y = suc A + 𝑜 y
30 oasuc B On y On B + 𝑜 suc y = suc B + 𝑜 y
31 30 adantll A On B On y On B + 𝑜 suc y = suc B + 𝑜 y
32 29 31 sseq12d A On B On y On A + 𝑜 suc y B + 𝑜 suc y suc A + 𝑜 y suc B + 𝑜 y
33 27 32 bitr4d A On B On y On A + 𝑜 y B + 𝑜 y A + 𝑜 suc y B + 𝑜 suc y
34 33 biimpd A On B On y On A + 𝑜 y B + 𝑜 y A + 𝑜 suc y B + 𝑜 suc y
35 34 expcom y On A On B On A + 𝑜 y B + 𝑜 y A + 𝑜 suc y B + 𝑜 suc y
36 35 adantrd y On A On B On A B A + 𝑜 y B + 𝑜 y A + 𝑜 suc y B + 𝑜 suc y
37 vex x V
38 ss2iun y x A + 𝑜 y B + 𝑜 y y x A + 𝑜 y y x B + 𝑜 y
39 oalim A On x V Lim x A + 𝑜 x = y x A + 𝑜 y
40 39 adantlr A On B On x V Lim x A + 𝑜 x = y x A + 𝑜 y
41 oalim B On x V Lim x B + 𝑜 x = y x B + 𝑜 y
42 41 adantll A On B On x V Lim x B + 𝑜 x = y x B + 𝑜 y
43 40 42 sseq12d A On B On x V Lim x A + 𝑜 x B + 𝑜 x y x A + 𝑜 y y x B + 𝑜 y
44 38 43 syl5ibr A On B On x V Lim x y x A + 𝑜 y B + 𝑜 y A + 𝑜 x B + 𝑜 x
45 37 44 mpanr1 A On B On Lim x y x A + 𝑜 y B + 𝑜 y A + 𝑜 x B + 𝑜 x
46 45 expcom Lim x A On B On y x A + 𝑜 y B + 𝑜 y A + 𝑜 x B + 𝑜 x
47 46 adantrd Lim x A On B On A B y x A + 𝑜 y B + 𝑜 y A + 𝑜 x B + 𝑜 x
48 3 6 9 12 18 36 47 tfinds3 C On A On B On A B A + 𝑜 C B + 𝑜 C
49 48 exp4c C On A On B On A B A + 𝑜 C B + 𝑜 C
50 49 3imp231 A On B On C On A B A + 𝑜 C B + 𝑜 C