Metamath Proof Explorer


Theorem occl

Description: Closure of complement of Hilbert subset. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 8-Aug-2000) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion occl A A C

Proof

Step Hyp Ref Expression
1 ocsh A A S
2 ax-hcompl f Cauchy x f v x
3 vex f V
4 vex x V
5 3 4 breldm f v x f dom v
6 5 rexlimivw x f v x f dom v
7 2 6 syl f Cauchy f dom v
8 7 ad2antlr A f Cauchy f : A f dom v
9 hlimf v : dom v
10 9 ffvelrni f dom v v f
11 8 10 syl A f Cauchy f : A v f
12 simplll A f Cauchy f : A x A A
13 simpllr A f Cauchy f : A x A f Cauchy
14 simplr A f Cauchy f : A x A f : A
15 simpr A f Cauchy f : A x A x A
16 12 13 14 15 occllem A f Cauchy f : A x A v f ih x = 0
17 16 ralrimiva A f Cauchy f : A x A v f ih x = 0
18 ocel A v f A v f x A v f ih x = 0
19 18 ad2antrr A f Cauchy f : A v f A v f x A v f ih x = 0
20 11 17 19 mpbir2and A f Cauchy f : A v f A
21 ffun v : dom v Fun v
22 funfvbrb Fun v f dom v f v v f
23 9 21 22 mp2b f dom v f v v f
24 8 23 sylib A f Cauchy f : A f v v f
25 breq2 x = v f f v x f v v f
26 25 rspcev v f A f v v f x A f v x
27 20 24 26 syl2anc A f Cauchy f : A x A f v x
28 27 ex A f Cauchy f : A x A f v x
29 28 ralrimiva A f Cauchy f : A x A f v x
30 isch3 A C A S f Cauchy f : A x A f v x
31 1 29 30 sylanbrc A A C