Metamath Proof Explorer


Theorem occllem

Description: Lemma for occl . (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses occl.1 φ A
occl.2 φ F Cauchy
occl.3 φ F : A
occl.4 φ B A
Assertion occllem φ v F ih B = 0

Proof

Step Hyp Ref Expression
1 occl.1 φ A
2 occl.2 φ F Cauchy
3 occl.3 φ F : A
4 occl.4 φ B A
5 eqid TopOpen fld = TopOpen fld
6 5 cnfldhaus TopOpen fld Haus
7 6 a1i φ TopOpen fld Haus
8 ax-hcompl F Cauchy x F v x
9 hlimf v : dom v
10 ffn v : dom v v Fn dom v
11 9 10 ax-mp v Fn dom v
12 fnbr v Fn dom v F v x F dom v
13 11 12 mpan F v x F dom v
14 13 rexlimivw x F v x F dom v
15 2 8 14 3syl φ F dom v
16 ffun v : dom v Fun v
17 funfvbrb Fun v F dom v F v v F
18 9 16 17 mp2b F dom v F v v F
19 15 18 sylib φ F v v F
20 eqid + norm = + norm
21 eqid norm - = norm -
22 20 21 hhims norm - = IndMet + norm
23 eqid MetOpen norm - = MetOpen norm -
24 20 22 23 hhlm v = t MetOpen norm -
25 resss t MetOpen norm - t MetOpen norm -
26 24 25 eqsstri v t MetOpen norm -
27 26 ssbri F v v F F t MetOpen norm - v F
28 19 27 syl φ F t MetOpen norm - v F
29 21 hilxmet norm - ∞Met
30 23 mopntopon norm - ∞Met MetOpen norm - TopOn
31 29 30 mp1i φ MetOpen norm - TopOn
32 31 cnmptid φ x x MetOpen norm - Cn MetOpen norm -
33 1 4 sseldd φ B
34 31 31 33 cnmptc φ x B MetOpen norm - Cn MetOpen norm -
35 20 hhnv + norm NrmCVec
36 20 hhip ih = 𝑖OLD + norm
37 36 22 23 5 dipcn + norm NrmCVec ih MetOpen norm - × t MetOpen norm - Cn TopOpen fld
38 35 37 mp1i φ ih MetOpen norm - × t MetOpen norm - Cn TopOpen fld
39 31 32 34 38 cnmpt12f φ x x ih B MetOpen norm - Cn TopOpen fld
40 28 39 lmcn φ x x ih B F t TopOpen fld x x ih B v F
41 3 ffvelrnda φ k F k A
42 ocel A F k A F k x A F k ih x = 0
43 1 42 syl φ F k A F k x A F k ih x = 0
44 43 adantr φ k F k A F k x A F k ih x = 0
45 41 44 mpbid φ k F k x A F k ih x = 0
46 45 simpld φ k F k
47 oveq1 x = F k x ih B = F k ih B
48 eqid x x ih B = x x ih B
49 ovex F k ih B V
50 47 48 49 fvmpt F k x x ih B F k = F k ih B
51 46 50 syl φ k x x ih B F k = F k ih B
52 oveq2 x = B F k ih x = F k ih B
53 52 eqeq1d x = B F k ih x = 0 F k ih B = 0
54 45 simprd φ k x A F k ih x = 0
55 4 adantr φ k B A
56 53 54 55 rspcdva φ k F k ih B = 0
57 51 56 eqtrd φ k x x ih B F k = 0
58 ocss A A
59 1 58 syl φ A
60 3 59 fssd φ F :
61 fvco3 F : k x x ih B F k = x x ih B F k
62 60 61 sylan φ k x x ih B F k = x x ih B F k
63 c0ex 0 V
64 63 fvconst2 k × 0 k = 0
65 64 adantl φ k × 0 k = 0
66 57 62 65 3eqtr4d φ k x x ih B F k = × 0 k
67 66 ralrimiva φ k x x ih B F k = × 0 k
68 ovex x ih B V
69 68 48 fnmpti x x ih B Fn
70 fnfco x x ih B Fn F : x x ih B F Fn
71 69 60 70 sylancr φ x x ih B F Fn
72 63 fconst × 0 : 0
73 ffn × 0 : 0 × 0 Fn
74 72 73 ax-mp × 0 Fn
75 eqfnfv x x ih B F Fn × 0 Fn x x ih B F = × 0 k x x ih B F k = × 0 k
76 71 74 75 sylancl φ x x ih B F = × 0 k x x ih B F k = × 0 k
77 67 76 mpbird φ x x ih B F = × 0
78 fvex v F V
79 78 hlimveci F v v F v F
80 oveq1 x = v F x ih B = v F ih B
81 ovex v F ih B V
82 80 48 81 fvmpt v F x x ih B v F = v F ih B
83 19 79 82 3syl φ x x ih B v F = v F ih B
84 40 77 83 3brtr3d φ × 0 t TopOpen fld v F ih B
85 5 cnfldtopon TopOpen fld TopOn
86 85 a1i φ TopOpen fld TopOn
87 0cnd φ 0
88 1zzd φ 1
89 nnuz = 1
90 89 lmconst TopOpen fld TopOn 0 1 × 0 t TopOpen fld 0
91 86 87 88 90 syl3anc φ × 0 t TopOpen fld 0
92 7 84 91 lmmo φ v F ih B = 0