| Step | Hyp | Ref | Expression | 
						
							| 1 |  | occl.1 |  | 
						
							| 2 |  | occl.2 |  | 
						
							| 3 |  | occl.3 |  | 
						
							| 4 |  | occl.4 |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 5 | cnfldhaus |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | ax-hcompl |  | 
						
							| 9 |  | hlimf |  | 
						
							| 10 |  | ffn |  | 
						
							| 11 | 9 10 | ax-mp |  | 
						
							| 12 |  | fnbr |  | 
						
							| 13 | 11 12 | mpan |  | 
						
							| 14 | 13 | rexlimivw |  | 
						
							| 15 | 2 8 14 | 3syl |  | 
						
							| 16 |  | ffun |  | 
						
							| 17 |  | funfvbrb |  | 
						
							| 18 | 9 16 17 | mp2b |  | 
						
							| 19 | 15 18 | sylib |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 20 21 | hhims |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 20 22 23 | hhlm |  | 
						
							| 25 |  | resss |  | 
						
							| 26 | 24 25 | eqsstri |  | 
						
							| 27 | 26 | ssbri |  | 
						
							| 28 | 19 27 | syl |  | 
						
							| 29 | 21 | hilxmet |  | 
						
							| 30 | 23 | mopntopon |  | 
						
							| 31 | 29 30 | mp1i |  | 
						
							| 32 | 31 | cnmptid |  | 
						
							| 33 | 1 4 | sseldd |  | 
						
							| 34 | 31 31 33 | cnmptc |  | 
						
							| 35 | 20 | hhnv |  | 
						
							| 36 | 20 | hhip |  | 
						
							| 37 | 36 22 23 5 | dipcn |  | 
						
							| 38 | 35 37 | mp1i |  | 
						
							| 39 | 31 32 34 38 | cnmpt12f |  | 
						
							| 40 | 28 39 | lmcn |  | 
						
							| 41 | 3 | ffvelcdmda |  | 
						
							| 42 |  | ocel |  | 
						
							| 43 | 1 42 | syl |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 41 44 | mpbid |  | 
						
							| 46 | 45 | simpld |  | 
						
							| 47 |  | oveq1 |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | ovex |  | 
						
							| 50 | 47 48 49 | fvmpt |  | 
						
							| 51 | 46 50 | syl |  | 
						
							| 52 |  | oveq2 |  | 
						
							| 53 | 52 | eqeq1d |  | 
						
							| 54 | 45 | simprd |  | 
						
							| 55 | 4 | adantr |  | 
						
							| 56 | 53 54 55 | rspcdva |  | 
						
							| 57 | 51 56 | eqtrd |  | 
						
							| 58 |  | ocss |  | 
						
							| 59 | 1 58 | syl |  | 
						
							| 60 | 3 59 | fssd |  | 
						
							| 61 |  | fvco3 |  | 
						
							| 62 | 60 61 | sylan |  | 
						
							| 63 |  | c0ex |  | 
						
							| 64 | 63 | fvconst2 |  | 
						
							| 65 | 64 | adantl |  | 
						
							| 66 | 57 62 65 | 3eqtr4d |  | 
						
							| 67 | 66 | ralrimiva |  | 
						
							| 68 |  | ovex |  | 
						
							| 69 | 68 48 | fnmpti |  | 
						
							| 70 |  | fnfco |  | 
						
							| 71 | 69 60 70 | sylancr |  | 
						
							| 72 | 63 | fconst |  | 
						
							| 73 |  | ffn |  | 
						
							| 74 | 72 73 | ax-mp |  | 
						
							| 75 |  | eqfnfv |  | 
						
							| 76 | 71 74 75 | sylancl |  | 
						
							| 77 | 67 76 | mpbird |  | 
						
							| 78 |  | fvex |  | 
						
							| 79 | 78 | hlimveci |  | 
						
							| 80 |  | oveq1 |  | 
						
							| 81 |  | ovex |  | 
						
							| 82 | 80 48 81 | fvmpt |  | 
						
							| 83 | 19 79 82 | 3syl |  | 
						
							| 84 | 40 77 83 | 3brtr3d |  | 
						
							| 85 | 5 | cnfldtopon |  | 
						
							| 86 | 85 | a1i |  | 
						
							| 87 |  | 0cnd |  | 
						
							| 88 |  | 1zzd |  | 
						
							| 89 |  | nnuz |  | 
						
							| 90 | 89 | lmconst |  | 
						
							| 91 | 86 87 88 90 | syl3anc |  | 
						
							| 92 | 7 84 91 | lmmo |  |