Metamath Proof Explorer


Theorem occon3

Description: Hilbert lattice contraposition law. (Contributed by Mario Carneiro, 18-May-2014) (New usage is discouraged.)

Ref Expression
Assertion occon3 A B A B B A

Proof

Step Hyp Ref Expression
1 ococss B B B
2 1 adantl A B B B
3 ocss B B
4 occon A B A B B A
5 3 4 sylan2 A B A B B A
6 sstr2 B B B A B A
7 2 5 6 sylsyld A B A B B A
8 ococss A A A
9 8 adantr A B A A
10 id B B
11 ocss A A
12 occon B A B A A B
13 10 11 12 syl2anr A B B A A B
14 sstr2 A A A B A B
15 9 13 14 sylsyld A B B A A B
16 7 15 impbid A B A B B A