Metamath Proof Explorer


Theorem ocin

Description: Intersection of a Hilbert subspace and its complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion ocin A S A A = 0

Proof

Step Hyp Ref Expression
1 shocel A S x A x y A x ih y = 0
2 oveq2 y = x x ih y = x ih x
3 2 eqeq1d y = x x ih y = 0 x ih x = 0
4 3 rspccv y A x ih y = 0 x A x ih x = 0
5 his6 x x ih x = 0 x = 0
6 5 biimpd x x ih x = 0 x = 0
7 4 6 sylan9r x y A x ih y = 0 x A x = 0
8 1 7 syl6bi A S x A x A x = 0
9 8 com23 A S x A x A x = 0
10 9 impd A S x A x A x = 0
11 sh0 A S 0 A
12 oc0 A S 0 A
13 11 12 jca A S 0 A 0 A
14 eleq1 x = 0 x A 0 A
15 eleq1 x = 0 x A 0 A
16 14 15 anbi12d x = 0 x A x A 0 A 0 A
17 13 16 syl5ibrcom A S x = 0 x A x A
18 10 17 impbid A S x A x A x = 0
19 elin x A A x A x A
20 elch0 x 0 x = 0
21 18 19 20 3bitr4g A S x A A x 0
22 21 eqrdv A S A A = 0