Metamath Proof Explorer


Theorem ococss

Description: Inclusion in complement of complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ococss A A A

Proof

Step Hyp Ref Expression
1 ssel A y A y
2 ocorth A y A x A y ih x = 0
3 2 expd A y A x A y ih x = 0
4 3 ralrimdv A y A x A y ih x = 0
5 1 4 jcad A y A y x A y ih x = 0
6 ocss A A
7 ocel A y A y x A y ih x = 0
8 6 7 syl A y A y x A y ih x = 0
9 5 8 sylibrd A y A y A
10 9 ssrdv A A A