Metamath Proof Explorer


Theorem ocsh

Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ocsh A A S

Proof

Step Hyp Ref Expression
1 ocval A A = x | y A x ih y = 0
2 ssrab2 x | y A x ih y = 0
3 1 2 eqsstrdi A A
4 ssel A y A y
5 hi01 y 0 ih y = 0
6 4 5 syl6 A y A 0 ih y = 0
7 6 ralrimiv A y A 0 ih y = 0
8 ax-hv0cl 0
9 7 8 jctil A 0 y A 0 ih y = 0
10 ocel A 0 A 0 y A 0 ih y = 0
11 9 10 mpbird A 0 A
12 3 11 jca A A 0 A
13 ssel2 A z A z
14 ax-his2 x y z x + y ih z = x ih z + y ih z
15 14 3expa x y z x + y ih z = x ih z + y ih z
16 oveq12 x ih z = 0 y ih z = 0 x ih z + y ih z = 0 + 0
17 00id 0 + 0 = 0
18 16 17 eqtrdi x ih z = 0 y ih z = 0 x ih z + y ih z = 0
19 15 18 sylan9eq x y z x ih z = 0 y ih z = 0 x + y ih z = 0
20 19 ex x y z x ih z = 0 y ih z = 0 x + y ih z = 0
21 20 ancoms z x y x ih z = 0 y ih z = 0 x + y ih z = 0
22 13 21 sylan A z A x y x ih z = 0 y ih z = 0 x + y ih z = 0
23 22 an32s A x y z A x ih z = 0 y ih z = 0 x + y ih z = 0
24 23 ralimdva A x y z A x ih z = 0 y ih z = 0 z A x + y ih z = 0
25 24 imdistanda A x y z A x ih z = 0 y ih z = 0 x y z A x + y ih z = 0
26 hvaddcl x y x + y
27 26 anim1i x y z A x + y ih z = 0 x + y z A x + y ih z = 0
28 25 27 syl6 A x y z A x ih z = 0 y ih z = 0 x + y z A x + y ih z = 0
29 ocel A x A x z A x ih z = 0
30 ocel A y A y z A y ih z = 0
31 29 30 anbi12d A x A y A x z A x ih z = 0 y z A y ih z = 0
32 an4 x z A x ih z = 0 y z A y ih z = 0 x y z A x ih z = 0 z A y ih z = 0
33 r19.26 z A x ih z = 0 y ih z = 0 z A x ih z = 0 z A y ih z = 0
34 33 anbi2i x y z A x ih z = 0 y ih z = 0 x y z A x ih z = 0 z A y ih z = 0
35 32 34 bitr4i x z A x ih z = 0 y z A y ih z = 0 x y z A x ih z = 0 y ih z = 0
36 31 35 bitrdi A x A y A x y z A x ih z = 0 y ih z = 0
37 ocel A x + y A x + y z A x + y ih z = 0
38 28 36 37 3imtr4d A x A y A x + y A
39 38 ralrimivv A x A y A x + y A
40 mul01 x x 0 = 0
41 oveq2 y ih z = 0 x y ih z = x 0
42 41 eqeq1d y ih z = 0 x y ih z = 0 x 0 = 0
43 40 42 syl5ibrcom x y ih z = 0 x y ih z = 0
44 43 ad2antrl z x y y ih z = 0 x y ih z = 0
45 ax-his3 x y z x y ih z = x y ih z
46 45 eqeq1d x y z x y ih z = 0 x y ih z = 0
47 46 3expa x y z x y ih z = 0 x y ih z = 0
48 47 ancoms z x y x y ih z = 0 x y ih z = 0
49 44 48 sylibrd z x y y ih z = 0 x y ih z = 0
50 13 49 sylan A z A x y y ih z = 0 x y ih z = 0
51 50 an32s A x y z A y ih z = 0 x y ih z = 0
52 51 ralimdva A x y z A y ih z = 0 z A x y ih z = 0
53 52 imdistanda A x y z A y ih z = 0 x y z A x y ih z = 0
54 hvmulcl x y x y
55 54 anim1i x y z A x y ih z = 0 x y z A x y ih z = 0
56 53 55 syl6 A x y z A y ih z = 0 x y z A x y ih z = 0
57 30 anbi2d A x y A x y z A y ih z = 0
58 anass x y z A y ih z = 0 x y z A y ih z = 0
59 57 58 bitr4di A x y A x y z A y ih z = 0
60 ocel A x y A x y z A x y ih z = 0
61 56 59 60 3imtr4d A x y A x y A
62 61 ralrimivv A x y A x y A
63 39 62 jca A x A y A x + y A x y A x y A
64 issh2 A S A 0 A x A y A x + y A x y A x y A
65 12 63 64 sylanbrc A A S