Metamath Proof Explorer


Theorem ocv0

Description: The orthocomplement of the empty set. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvz.v V = Base W
ocvz.o ˙ = ocv W
Assertion ocv0 ˙ = V

Proof

Step Hyp Ref Expression
1 ocvz.v V = Base W
2 ocvz.o ˙ = ocv W
3 0ss V
4 eqid 𝑖 W = 𝑖 W
5 eqid Scalar W = Scalar W
6 eqid 0 Scalar W = 0 Scalar W
7 1 4 5 6 2 ocvval V ˙ = x V | y x 𝑖 W y = 0 Scalar W
8 3 7 ax-mp ˙ = x V | y x 𝑖 W y = 0 Scalar W
9 ral0 y x 𝑖 W y = 0 Scalar W
10 9 rgenw x V y x 𝑖 W y = 0 Scalar W
11 rabid2 V = x V | y x 𝑖 W y = 0 Scalar W x V y x 𝑖 W y = 0 Scalar W
12 10 11 mpbir V = x V | y x 𝑖 W y = 0 Scalar W
13 8 12 eqtr4i ˙ = V