Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
ocv0
Next ⟩
ocvz
Metamath Proof Explorer
Ascii
Unicode
Theorem
ocv0
Description:
The orthocomplement of the empty set.
(Contributed by
Mario Carneiro
, 23-Oct-2015)
Ref
Expression
Hypotheses
ocvz.v
⊢
V
=
Base
W
ocvz.o
⊢
⊥
˙
=
ocv
⁡
W
Assertion
ocv0
⊢
⊥
˙
⁡
∅
=
V
Proof
Step
Hyp
Ref
Expression
1
ocvz.v
⊢
V
=
Base
W
2
ocvz.o
⊢
⊥
˙
=
ocv
⁡
W
3
0ss
⊢
∅
⊆
V
4
eqid
⊢
⋅
𝑖
⁡
W
=
⋅
𝑖
⁡
W
5
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
6
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
7
1
4
5
6
2
ocvval
⊢
∅
⊆
V
→
⊥
˙
⁡
∅
=
x
∈
V
|
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
8
3
7
ax-mp
⊢
⊥
˙
⁡
∅
=
x
∈
V
|
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
9
ral0
⊢
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
10
9
rgenw
⊢
∀
x
∈
V
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
11
rabid2
⊢
V
=
x
∈
V
|
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
↔
∀
x
∈
V
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
12
10
11
mpbir
⊢
V
=
x
∈
V
|
∀
y
∈
∅
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
13
8
12
eqtr4i
⊢
⊥
˙
⁡
∅
=
V