Metamath Proof Explorer


Theorem ocv2ss

Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis ocv2ss.o ˙ = ocv W
Assertion ocv2ss T S ˙ S ˙ T

Proof

Step Hyp Ref Expression
1 ocv2ss.o ˙ = ocv W
2 sstr2 T S S Base W T Base W
3 idd T S x Base W x Base W
4 ssralv T S y S x 𝑖 W y = 0 Scalar W y T x 𝑖 W y = 0 Scalar W
5 2 3 4 3anim123d T S S Base W x Base W y S x 𝑖 W y = 0 Scalar W T Base W x Base W y T x 𝑖 W y = 0 Scalar W
6 eqid Base W = Base W
7 eqid 𝑖 W = 𝑖 W
8 eqid Scalar W = Scalar W
9 eqid 0 Scalar W = 0 Scalar W
10 6 7 8 9 1 elocv x ˙ S S Base W x Base W y S x 𝑖 W y = 0 Scalar W
11 6 7 8 9 1 elocv x ˙ T T Base W x Base W y T x 𝑖 W y = 0 Scalar W
12 5 10 11 3imtr4g T S x ˙ S x ˙ T
13 12 ssrdv T S ˙ S ˙ T