Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
ocv2ss
Next ⟩
ocvin
Metamath Proof Explorer
Ascii
Unicode
Theorem
ocv2ss
Description:
Orthocomplements reverse subset inclusion.
(Contributed by
Mario Carneiro
, 13-Oct-2015)
Ref
Expression
Hypothesis
ocv2ss.o
⊢
⊥
˙
=
ocv
⁡
W
Assertion
ocv2ss
⊢
T
⊆
S
→
⊥
˙
⁡
S
⊆
⊥
˙
⁡
T
Proof
Step
Hyp
Ref
Expression
1
ocv2ss.o
⊢
⊥
˙
=
ocv
⁡
W
2
sstr2
⊢
T
⊆
S
→
S
⊆
Base
W
→
T
⊆
Base
W
3
idd
⊢
T
⊆
S
→
x
∈
Base
W
→
x
∈
Base
W
4
ssralv
⊢
T
⊆
S
→
∀
y
∈
S
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
→
∀
y
∈
T
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
5
2
3
4
3anim123d
⊢
T
⊆
S
→
S
⊆
Base
W
∧
x
∈
Base
W
∧
∀
y
∈
S
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
→
T
⊆
Base
W
∧
x
∈
Base
W
∧
∀
y
∈
T
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
6
eqid
⊢
Base
W
=
Base
W
7
eqid
⊢
⋅
𝑖
⁡
W
=
⋅
𝑖
⁡
W
8
eqid
⊢
Scalar
⁡
W
=
Scalar
⁡
W
9
eqid
⊢
0
Scalar
⁡
W
=
0
Scalar
⁡
W
10
6
7
8
9
1
elocv
⊢
x
∈
⊥
˙
⁡
S
↔
S
⊆
Base
W
∧
x
∈
Base
W
∧
∀
y
∈
S
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
11
6
7
8
9
1
elocv
⊢
x
∈
⊥
˙
⁡
T
↔
T
⊆
Base
W
∧
x
∈
Base
W
∧
∀
y
∈
T
x
⋅
𝑖
⁡
W
y
=
0
Scalar
⁡
W
12
5
10
11
3imtr4g
⊢
T
⊆
S
→
x
∈
⊥
˙
⁡
S
→
x
∈
⊥
˙
⁡
T
13
12
ssrdv
⊢
T
⊆
S
→
⊥
˙
⁡
S
⊆
⊥
˙
⁡
T