Metamath Proof Explorer


Theorem ocval

Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion ocval H H = x | y H x ih y = 0

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 elpw2 H 𝒫 H
3 raleq z = H y z x ih y = 0 y H x ih y = 0
4 3 rabbidv z = H x | y z x ih y = 0 = x | y H x ih y = 0
5 df-oc = z 𝒫 x | y z x ih y = 0
6 1 rabex x | y H x ih y = 0 V
7 4 5 6 fvmpt H 𝒫 H = x | y H x ih y = 0
8 2 7 sylbir H H = x | y H x ih y = 0