Metamath Proof Explorer


Theorem ocvcss

Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v V = Base W
cssss.c C = ClSubSp W
ocvcss.o ˙ = ocv W
Assertion ocvcss W PreHil S V ˙ S C

Proof

Step Hyp Ref Expression
1 cssss.v V = Base W
2 cssss.c C = ClSubSp W
3 ocvcss.o ˙ = ocv W
4 1 3 ocvocv W PreHil S V S ˙ ˙ S
5 3 ocv2ss S ˙ ˙ S ˙ ˙ ˙ S ˙ S
6 4 5 syl W PreHil S V ˙ ˙ ˙ S ˙ S
7 1 3 ocvss ˙ S V
8 7 a1i S V ˙ S V
9 1 2 3 iscss2 W PreHil ˙ S V ˙ S C ˙ ˙ ˙ S ˙ S
10 8 9 sylan2 W PreHil S V ˙ S C ˙ ˙ ˙ S ˙ S
11 6 10 mpbird W PreHil S V ˙ S C