Metamath Proof Explorer


Theorem ocvfval

Description: The orthocomplement operation. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V = Base W
ocvfval.i , ˙ = 𝑖 W
ocvfval.f F = Scalar W
ocvfval.z 0 ˙ = 0 F
ocvfval.o ˙ = ocv W
Assertion ocvfval W X ˙ = s 𝒫 V x V | y s x , ˙ y = 0 ˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V = Base W
2 ocvfval.i , ˙ = 𝑖 W
3 ocvfval.f F = Scalar W
4 ocvfval.z 0 ˙ = 0 F
5 ocvfval.o ˙ = ocv W
6 elex W X W V
7 fveq2 h = W Base h = Base W
8 7 1 eqtr4di h = W Base h = V
9 8 pweqd h = W 𝒫 Base h = 𝒫 V
10 fveq2 h = W 𝑖 h = 𝑖 W
11 10 2 eqtr4di h = W 𝑖 h = , ˙
12 11 oveqd h = W x 𝑖 h y = x , ˙ y
13 fveq2 h = W Scalar h = Scalar W
14 13 3 eqtr4di h = W Scalar h = F
15 14 fveq2d h = W 0 Scalar h = 0 F
16 15 4 eqtr4di h = W 0 Scalar h = 0 ˙
17 12 16 eqeq12d h = W x 𝑖 h y = 0 Scalar h x , ˙ y = 0 ˙
18 17 ralbidv h = W y s x 𝑖 h y = 0 Scalar h y s x , ˙ y = 0 ˙
19 8 18 rabeqbidv h = W x Base h | y s x 𝑖 h y = 0 Scalar h = x V | y s x , ˙ y = 0 ˙
20 9 19 mpteq12dv h = W s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h = s 𝒫 V x V | y s x , ˙ y = 0 ˙
21 df-ocv ocv = h V s 𝒫 Base h x Base h | y s x 𝑖 h y = 0 Scalar h
22 eqid s 𝒫 V x V | y s x , ˙ y = 0 ˙ = s 𝒫 V x V | y s x , ˙ y = 0 ˙
23 1 fvexi V V
24 ssrab2 x V | y s x , ˙ y = 0 ˙ V
25 23 24 elpwi2 x V | y s x , ˙ y = 0 ˙ 𝒫 V
26 25 a1i s 𝒫 V x V | y s x , ˙ y = 0 ˙ 𝒫 V
27 22 26 fmpti s 𝒫 V x V | y s x , ˙ y = 0 ˙ : 𝒫 V 𝒫 V
28 23 pwex 𝒫 V V
29 fex2 s 𝒫 V x V | y s x , ˙ y = 0 ˙ : 𝒫 V 𝒫 V 𝒫 V V 𝒫 V V s 𝒫 V x V | y s x , ˙ y = 0 ˙ V
30 27 28 28 29 mp3an s 𝒫 V x V | y s x , ˙ y = 0 ˙ V
31 20 21 30 fvmpt W V ocv W = s 𝒫 V x V | y s x , ˙ y = 0 ˙
32 6 31 syl W X ocv W = s 𝒫 V x V | y s x , ˙ y = 0 ˙
33 5 32 syl5eq W X ˙ = s 𝒫 V x V | y s x , ˙ y = 0 ˙